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1 A Survey and an Introduction

1.1 What is Computation

Computer/computation (abacus, slide rule, MacBook Air, DNA computer, even, a human

brain): mapping of abstract, universally applicable mathematics onto evolution of a physical

system (internal and external states). This evolution is faster, more controllable (more error

free), easier to understand, etc. than many other natural processes - which obey the same

universal mathematics, and physical laws.

Just like people use millimeters of mercury (abbreviated mmHg) to measure air pressure,

and use thermal couple to measure temperature, people use specialized systems to “measure”

mathematics.

Pancomputationalism: everything happening in this world is “computation”.

Computer simulation: approximate mapping of the evolution of natural processes onto evo-

lution of a specially designed physical system, the computer.

Most commercial computers today move electronic charges around: electronic computer.

However, long-haul communication network moves photons.

Fundamentally, computer network ≡ computer. The memory bus on a PC motherboard is

a fast network. Beowulf PC cluster based on ethernet or InfiniBand switches. Consider the

computers and the network as a whole: coupled internal states : some strongly coupled, some

weakly/intermittently coupled. The analogy between neural network (neuron / synapse) and

Internet / cloud computing. Social network. Gaia theory.

CNSE: the use of computers and networks to facilitate discovery and problem solving in

Nuclear Science and Engineering (NSE).

The Manhattan Project required heavy numerical calculations in neutronics and hydro-

dynamics. These calculations were carried out by human computers aided by mechanical /
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electro-mechanical calculators (for example the Marchant brand - which often broke down due

to heavy use, and Richard Feynman and Nicholas Metropolis figured out how to repair), as

well as “automated” IBM punched card machines (machine-readable, also electro-mechanical

type) that read instructions and data from punched card and could repeat calculations with-

out tiring. von Neumann served as consultant in the Manhattan Project. Neutronics and

hydrodynamics are still at the heart of Nuclear Science and Engineering today. So one could

say that CNSE was one of the very first applications of modern computing.

ENIAC (Electronic Numerical Integrator And Computer), dedicated on Feb. 15, 1946 at

the University of Pennsylvania, was considered by many to be the first general-purpose

electronic computer. von Neumann and others from the Manhattan Project provided key

ideas for ENIAC and beyond. ENIAC also did many neutronics simulations for visitors from

Los Alamos.

Semiconductor transistor was invented in 1947 by Shockley, Bardeen, and Brattain at Bell

Labs. Moore’s law (1965): density of transistors in integrated circuits doubles every two

years. (law of miniaturization)

The above law profoundly transformed human civilization in the past 50 years (Information

Age). With the advent of Internet (late 1960s) and World Wide Web (Tim Berners-Lee,

1991, CERN, the European Organization for Nuclear Research), this trend seemed to have

accelerated.

Computation fundamentally affects the practice of science and engineering. Before, theory

and experimentation were the two pillars of scientific inquiry. Now, computation has become

the third pillar.

Theory: reduction of natural processes to human-comprehensible logic, and then aided by

simple calculations, to predict natural processes. In short, use of brain “computer” to

simulate real world. This approach has been astoundingly successful, and will never go out

of fashion. But, this process can be expedited by computers (Manhattan Project showed the

need).

Experimentation: replication of the physical system of interest to repeat its evolution. In

short, replicate a much smaller, but otherwise very similar, piece of the real world to simulate

the real world.

Computation: the “mapping” is onto neither the human brain, nor a smaller replication of
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physical system, but in silico - a well-controlled physical system (electronic computer) with

no external resemblance to the physical system of interest.

The “mapping” idea is behind the “Virtualization” concept. Certainly, if you can map once,

you can map twice...

The well-controlled-ness of today’s digital computer is outstanding. Almost all physical

experiments we do seems subjected to significant noise. But impression of digital computa-

tion: no noise. Thermal fluctuations (true randomness) are entirely filtered out, by design

of electronic circuits. Pseudo randomness needs to be artificially introduced when needed in

simulations [1, 2].

The advantages to perform mapping in silico are

• Compared to in brain mapping: vast advantages in speed, precision, data storage, ...

• Compared to physical world mapping: cost, better control of initial and boundary

conditions (parametric studies), rich data (access to all internal states), ...

Main disadvantages compared to experiments:

1. Retains only key pieces of the physics in mapping - loss of physics: i.e. in practice, while

modeling materials thermal conduction, do not model neutrino physics or quantum

gravity. This, BTW, is the same for in brain mapping.

Double-edged sword: This loss-of-physics disadvantage is also tied with the advantage

of “better control of initial and boundary conditions”: when modeling surface chemical

reactions under ultra-high vacuum conditions, do not worry about vacuum leak related

to strength of glass and crack propagation as an experimentalist in real world would

do.

2. Many real-world processes are still too complex to be simulated in silico, at a level

we would like to simulate them. Primary example is materials science. Many-electron

Schrödinger equation (Dirac equation for relativistic electrons) was written down in

1930s - in principle all materials behaviors computable from scratch to extreme ac-

curacy. Not only materials behavior, but 99.9% of mechanical engineering, chemical

engineering, solar cells, whatever, are in principle computable from understanding of

many-electrons.
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But in reality, this will never work. Because computer cannot rigorously handle 1023

electrons together. We can only handleN = 104 electrons today, and the computational

cost scales as N3. (Curse of dimensionality). Thus the scheme is electrons → atoms

→ defects (dislocations, crack) → groups of defects → plastic strain → finite-element

modeling → computer-aided design (CAD) → a Boeing 777 you have confidence to

board. Multiscale multi-physics modeling. Complexity / Emergent behavior in nature.

These limitations are unlikely to disappear, and in many fields, still asphyxiating. Modelers

must be humble, and truly respect experimentalists and theorists, beyond lip service: again,

must respect experimental data, otherwise would be difficult to survive. The best approach

to do science and engineering is symbiosis of all three “mappings”. Sound experiments are the

ultimate check; human-comprehensible form is the ultimate desirable form; but computers

can help get us there!

Some milestones:

• “Four color map” theorem proven by Kenneth Appel and Wolfgang Haken using com-

puter (1976). The computer proof spreads over 400 pages of microfiche. “a good

mathematical proof is like a poem - this is a telephone directory!” Appel and Haken

agreed the proof was not “elegant, concise and completely comprehensible”. (logic

power)

• IBM Deep Blue beat chess world champion Garry Kasparov in 1997. (computing

power)

• IBM Watson won quiz show Jeopardy! in 2011, beating Brad Rutter, the biggest all-

time money winner, and Ken Jennings, the record holder for the longest championship

streak. (data power, natural language processing)

Combining computing power with control theory and physical power, one gets Robots, a

wave that is fast approaching (check out Boston Dynamics, an MIT faculty founded com-

pany, https://www.youtube.com/watch?v=cNZPRsrwumQ

https://www.youtube.com/watch?v=9qCbCpMYAe4) and will have much impact in the nu-

clear industry. If one googles “Fukushima robot”, one will find out much about the upcoming

trend in disaster relief. To prepare for nuclear disaster is the logical companion and physical

conjugate of risk analysis. [3]
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1.2 Bibliometric approach

Take some major journals (not complete list) in NSE:

• Nuclear Science and Engineering (ANS, 1956) [4, 5, 6, 7]

• Nuclear Engineering and Design (Elsevier-Netherlands) [8, 9, 10]

• Nuclear Technology (ANS) [11, 12, 13, 14]

• Progress in Nuclear Energy (Elsevier) [15, 16, 17, 18, 19]

• Annals of Nuclear Energy (Elsevier) [20, 21, 22]

• Nuclear Fusion (IAEA / Institute of Physics-UK) [23]

• Physics of Plasmas (American Institute of Physics)

• Journal of Nuclear Materials (Elsevier) [24, 25, 26]

• Health Physics (Health Physics Society) [27]

• Nuclear Instruments and Methods in Physics Research (Elsevier)

Some broader-based journals that NSE people also publish in:

• Journal of Computational Physics (Elsevier) [28, 29, 30]

• Physical Review Letters (American Physical Society) [31]

• PNAS (National Academy of Sciences) [32]

• Science (American Association for the Advancement of Science) [33, 34, 35, 36]

• Nature (Macmillan-UK) [37, 38, 39, 40, 41, 42]

Impact factor varies A LOT across fields [43], even sub-fields. Journals in Mathematics

tend to have much lower impact factor than journals in biology. But it is really obvious

that mathematicians are generally scary smart people, correct? No one would dare say that

mathematicians, a community as a whole, is intellectually lacking or contribute insignificantly

to science and engineering, right?
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The reasons are (a) Mathematics is so challenging, that there are much fewer professional

mathematicians than biologists. The population of publishing mathematicians is therefore

smaller than the population of publishing biologists. (b) Each mathematician tends to

publish less papers per year than a biologist (a mathematical proof is, well, a mathematical

proof). (c) A biological paper tends to cites more papers (for each protocol or assay) than

a mathematical paper. It should be self-evident that mathematicians are no less intelligent

than other scientists and engineers. Therefore, one has to be very careful in using citation

statistics when comparing journal/researcher across different fields.

1.3 The nature of networks

Basics of HTML (HyperText Markup Language) document: if I write a document named

demo.html and host it at li.mit.edu, with a line inside

<HTML>

<HEAD><TITLE>CNSE test</TITLE></HEAD>

<FONT SIZE=+2>Instructor <a href=http://li.mit.edu>Ju Li</A></FONT>

<P>

You can find mcnp introduction <a href=http://mcnp.lanl.gov/>here</a>.

<p>A cool figure:

<br><a href=Illustration2.jpg><img src=Illustration2.jpg width=150></a><P>Byebye!

</HTML>

<!-- http://li.mit.edu/S/CNSE/demo.html -->

information is hidden in the document (Markup), when you click on “here”, the brower

goes to http://mcnp.lanl.gov/ (retrieve another document from the web server, renders it

on screen but again hiding some information).

Consider each .HTML document as a vertex, and the link from document A to document

B as an edge (directional in the case of WWW). So each document can be characterized

by (kout, kin) pair. It was empirically observed that P (kout) ∝ k−γout
out , P (kin) ∝ k−γin

in , with

γout ≈ 2.45 and γin ≈ 2.1 amongst all sites hosted within nd.edu, whitehouse.gov, yahoo.com,

and snu.ac.kr [39]. There is a deep reason for this. In this section we will reveal the relations

between

1. Power-law distribution (scale-free behavior)
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2. Network science model: growth and preferential attachment

3. Often, hierarchical organization of society and nature

Note that k is integer, so we use P (k). If we have a real quantity w, we use dP = ρ(w)dw

instead. w, for instance, can be the money that a person, a company, or a country has.

The important thing for the discussion here is that the k’s (and w’s) are quantities that

are somewhat additive. If Sam has 60k, and Jennifer has 70k, then when they marry, then

the family will have 130k. Similar thing can be said about kout, kin of a group of webpages

(ignoring self citations).

If

ρ(w) ∝ w−γ (1)

when w ∈ (w1, w2), the above is so-called power-law distribution, or scale-free or self-similar

distribution within the cutoffs. The larger the ratio between upper and lower cutoffs w2/w1

is, the more prevalent this behavior is.

We can define cumulative probability as

P (W > w) ≡
∫ ∞

w

ρ(w′)dw′. (2)

Suppose w2 = ∞, and if w > w1, then we have the asymptotic tail behavior

P (W > w) ∝ w−α, (3)

with

α = γ − 1. (4)

So the typical way to obtain γ is to plot P (W > w) (ranging from 1 to 0) in log scale, as

one sweeps w from small to large (in log scale as well), and attempt to fit the slope (α). One

then adds 1 to the slope to obtain γ for the probability density scaling.

When w is wealth, (1) is also called Pareto distribution, with α called the Pareto index,

after Italian economist Vilfredo Pareto, who discovered wealth distribution is approximately

a power law in 1906, with 20% of people possessing about 80% of the wealth (long tail).

This is also called 80-20 rule, the law of the vital few. See Appendix A for more on income

inequality.
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Suppose w is an additive quantity (dollar, land, citation, degree of connection, energy):

wAB = wA + wB (5)

A power law distribution ρ(w) ∝ w−γ (also called scale free distribution) is fundamentally

different from an exponential distribution ρ(w) ∝ exp−w/w0 . In a power law distribution

ρ(2w)

ρ(w)
=

ρ(4w)

ρ(2w)
= 2−γ, (6)

meaning the ratio of 2-millionaires to millionaires is the same as the ratio of 4-millionaires

to 2-millionaires. In other words, the “social ecology” is preserved irrespective of whether

we are talking about a millionaire or a 2-millionaire. This is not true in the case of an

exponential distribution
ρ(2w)

ρ(w)
6= ρ(4w)

ρ(2w)
(7)

indeed, one would feel greater resistance in climbing the “richman’s ladder”, when one’s

wealth approaches the scale of w0. That is, if one’s current wealth w < w0, it is still quite

possible to double one’s wealth (or increase by a percentage). But if one’s current wealth

w = 5w0, it is almost impossible to double one’s wealth (or increase by a percentage). So in

the case of exponential distribution, we say there is a fixed “wealth-scale” or “lengthscale” in

the distribution, below which there is “wealth mobility” and above which there isn’t (“wealth

mobility ceiling”). Fortunately, or unfortunately, the world does not work like this. The true

personal wealth distribution turns out to be a log-normal distribution at the low end, which

connects to a power law distribution at the high end.[44]

Log-normal (Galton) distribution is defined as lnw, normally distributed:

dP =
exp(− (ln w−µ)2

2σ2 )
√

2πσ2
d lnw =

exp(− (ln w−µ)2

2σ2 )

w
√

2πσ2
dw, w ∈ (0,∞) (8)

This can be produced by a biased random walk in lnw. Imagine, for instance, that you are

in a business. Everyday, you would earn or lose money. The larger the business, the more

money you could win or lose. So

wt → wt+1 = wt + gt (9)
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and as a simple model, we say

gt ∝ wt → gt ≡ wtrt, (10)

Therefore

lnwt+1 = lnwt + ln(1 + rt) (11)

and ln(1 + rt) may be decomposed into a deterministic part and an accidental part:

ln(1 + rt) = dt + at (12)

Now assume at at different times are uncorrelated and at is sampled from a distribution that

does not vary parametrically with time. Then lnwt is performing a biased random walk. We

know from Monte Carlo simulatin of diffusion

∂tρ−D∂2
xρ = δ(x, t) (13)

that the outcome of a random walk is Gaussian distriubution. Thus in the long run, the

distribution of lnw will be a shifted Gaussian. QED. Thus, personal wealth would satisfy

Galton distribution if a person’s “fortune” or fate is indeed uncorrelated with other people’s

fates, and simply performing independent random walks.

The log-normal distribution has long tails (slower than exponential distribution). However

it also decays faster than power law. In terms of fastness of decay (short-tailedness):

Gaussian > Poisson > exponential > Log − normal > Power − law (14)

So, why do data actually show power-law dominates the high-income range [44],

for many decades of wealth above the 90 percentile? Why does income inequality seem to be

the worst among the 400 richest Americans? The answer turns out to be related to the fabric

of the society (how people interact and are organized), not unlike how the World Wide Web

is organized (to be shown in 1.3.4). The crude answer is that the self-organization tends to

develop “hierarchical” structures.

Before we go into the why, let me show some more examples of power-law distribution in

Earthquakes (of great relevance to NSE), in language, and in geometry.

11



1.3.1 Earthquakes and Accidents

The Fukushima accident indicates assessing earthquake risk needs serious attention. Accord-

ing to the Gutenberg-Richter law:

N(magnitude > M) ≈ 10a−bM (15)

where M is the earthquake magnitude in Richter scale, N is the total number of earthquakes

on Earth with magnitude ≥ M over a fixed time period, and a and b are M -independent

constants. b is approximately 1.0 for Earth.

(15) does not look like a power-law, until one looks at the definition of M , which is related

to the log of energy release of the Earthquake:

M =
2

3
log10

(
E

63000Joule

)
(16)

so

N ≈ E− 2
3 (17)

or γ = 5
3
.

∆M = 1 corresponds to 103/2 = 31.6× in released energy E. An M = 4 earthquake releases

approximately E = 0.63×1011 Joules of energy. An M = 9 earthquake releases E = 2×1018

Joules of energy (1 exajoule = 1018 Joule). A 1GW nuclear power plant produces 0.03

EJ of electricity. (In comparison, 2008 worldwide energy consumption is 474 EJ / year,

illustrating the “Anthropocene”). Near the epicenter of an M = 4.0 earthquake, one can

notice shaking of household items hanging on the wall and ceilings. There are approximately

13,000 earthquakes per year on Earth with M between 4 and 5.

Note that γ = 5
3

gives very long tails, so long that the mean released energy is divergent:∫
wρ(w)dw (18)

in the large-w limit. Generally speaking, only few moments, if any, can be defined for power-

law distribution. This is very different from other kinds of distributions (normal, exponential,

log-normal).

Just like one can characterize an earthquake by its destructive energy, one can also charac-
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terize an accident by damage in dollars, casualty, or release of total radioactivity in the case

of nuclear accidents. One may also characterize the severity of war or terrorism events by

causalty. Power-law is a frequently used form in regression of these statistics [42, 34]. But

trying to understand why power-law form should work is much more involved.

1.3.2 Language and Zipf’s law

Power-law distribution is also found in languages. Zipf was a Harvard linguist who studied

the occurrence of words in languages. He ranks words by their occurrence frequencies, and

find that

frequencyword ∝ rank−β
word. (19)

In English, β is close to 1, which means the most frequent word (“the”, ∼ 7% of all English

word occurrences) is twice more frequent than the second most frequent word (“of”, ∼ 3.5%

of all English word occurrences), and three times more frequent than the third most frequent

word (“and”, 2.8% of all English word occurrences).

Note here that unlike all other examples, the rank is not additive. However, if we compare

this to the ranking of wealthy people, then some analogy may be drawn.

1.3.3 Geometry: fractals

In geometry, the power-law distribution is a characteristic of fractal behavior [45]. One can

see this by a box-counting procedure, where one varies the resolution of counting boxes or

rendering pixels. Imagine a 2D 1 × 1 square domain. One can define a simple line in this

domain, say a horizontal, vertical, or diagonal straight line, like in vector graphics language

(as opposed to raster graphics) PostScript:

0.3 0.2 moveto 0.5 0.5 lineto

Now image one tile the domain with small boxes of size s× s (total 1/s2 boxes), and ask the

question how many of these boxes are cut by this object: if a box is cut, we accumulate 1

to the counter N . It should be clear that as one refines s, there will be N(s) ∝ s−1. On the

other hand, if we define a rectangle:

newpath
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0.1 0.2 moveto

0.6 0.2 lineto

0.6 0.75 lineto

0.1 0.75 lineto

closepath

gsave

0.5 setgray

fill

grestore

and ask about the box-count scaling, it would scale as N(s) ∝ s−2. So generally we can

define fractal dimension of an object (a geometric descriptor) by

N(s) ∝ s−f . (20)

There are examples of objects with f = 1.5 in 2D, which is intermediate between a solid

area and a simple line [46]. There are also examples of fractal density of dislocations in

metals.[47]

1.3.4 Barabasi-Albert Model: growth and preferential attachment

In the context of the WWW, a power-law distribution means there are mega-sites with large

kout and kin, where a lot of pages links to them, and they link to a lot of pages. This,

in a general sense, is the behavior of google - many browsers set google as default search

engine, and google return pages with links to many other sites. By setting robots to roam

the WWW, it was found that it takes on average

〈d〉 = 0.35 + 2.06 log10(N) (21)

clicks to go from any document to any other document in a N -vertex WWW. [An example

of d would be how many clicks it takes to go from a Wikipedia page on the movie “Planet

of the Apes (1968)”, to a web page on how to make cheesecakes.] For N = 1010, this is

about 20, so 20 is the “diameter” of the WWW. It is a “small-world network”, like the social

network or biological network.

Right now there are about as many web pages as people on the planet (same order of
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magnitude). But people’s life experience is much richer than a single web page, in other

words we deal with a lot more people over our lifespan than a typical webpage deals with

other webpages. Thus “six degrees of separation”. The claim is that anyone on earth is

related by about 6 steps of introduction by an acquaintance.

(21) is related to the power law distribution. The long tails in the distribution are highly

connected. They are efficient hubs of the “small-world network”. In other words, having

a well-connected friend can greatly shorten the distance (number of introductions) between

you and other people on earth. In air travel, it is like living near one of the main hubs:

Chicago, Washington, Los Angeles... it really shortens your “distance” to any part of the

world.

Erdos-Renyi random graph model: Start with N vertices. There are N(N − 1)/2 possible

pairs. Connect each possible pair with probability p. The probability that a vertex has k

links is a binomial distribution:

P (k) =
(N − 1)!

k!(N − 1 − k)!
pk(1 − p)N−1−k (22)

The average 〈k〉 = (N − 1)p ≡ λ. Suppose we keep λ fixed, and let N → ∞.

(1 − p)N−1−k ≈ exp(−p(N − 1 − k)) ≈ exp(−λ) (23)

we end up with Poisson distribution:

P (k) =
λk

k!
exp(−λ) (24)

Given the Stirling formula for larger k:

ln k! = k ln k − k (25)

we have for large k

P (k) ∼ exp(−k ln k + k + k lnλ− λ) (26)

which is decaying even faster than exponentially, and does not fit the observed WWW

behavior.

Growth and preferential attachment [33] (flocking behavior): start with m0 vertices, each

time step add a new vertex. This new vertex always add k = m links, with m < m0. (not
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true for general web pages). This link is considered bi-directional, so at each step, the total

degree of network increases by 2m. Starting from t = 0, then
∑

j kj = 2mt, and N = m0 + t.

For each ∆t = 1, the probability of ki → ki + 1, due to growth of this new node, is

P (ki → ki + 1) = mΠi = m
ki∑
j kj

=
ki

2t
, t > 1 (27)

In other words, the more popular vertex is even more likely to be linked (preferential attach-

ment) by the new member.

So
dki

dt
=

ki

2t
(28)

d ln k2
i

d ln t
= 1 (29)

k2
i = at (30)

ki(t) = at1/2 = m

(
t

ti

)1/2

(31)

So after very long time,

P (ki(t) = k, t) =
1/t

1
2
m
(

t
ti

)1/2
1
ti

=
2m2

k3
(32)

with γ = 3. Note that this distribution is time-independent.

One notes the following features about the Barabasi-Albert derivation:

1. γ = 3 is relatively large, compared to actual γout ≈ 2.45 and γin ≈ 2.1 of WWW. This

means BA model provides long tail, but is still comparatively shorter than reality.

2. One may wonder about how come we can derive a distribution that is time-independent,

even as max ki is growing with time as t1/2. The answer is that while for a fixed k-

range, P (k) will converge, the range of validity for the power-law will increase with

time, to larger and larger k-range. That is to say, we are constantly injecting newbies

at the low-k end, who will grow and enter into a fixed [k, k+dk] observation range, but

those who were originally in the observation range will grow and move out, resulting

in a nearly time-independent occupuation for fixed [k, k + dk] observation range. We

also note that the derivation was based on a continuous-k assumption, whereas at the
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low-k end the discreteness of k becomes important.

3. With γ = 3, P (k) will have convergent 0th and 1st moments, but not the 2nd moment.

4. For the 0th moment, if we pretend at t = ∞, the power-law is valid through [kcut,∞)

as a continuous variable (in reality k is discrete, which is particularly important at

the low end), then

1 =

∫ ∞

kcut

2m2

k3
dk =

∫ ∞

kcut

m2|dk−2| → kcut = m (33)

which makes sense “physically”, since that’s where the newbies are injected.

5. For the 1st moment, we have

〈k〉 =

∫ ∞

m

km2|dk−2| ≈ 2m (34)

The result is only approximate, since at the low-k end, the discreteness of k is im-

portant. The result above nontheless means we should expect the concept of “average

connectivity” to exist. If we assume that income or wealth is akin to connectivity, then

the “average income” is a valid concept in an economy if γ > 2. (with Pareto 80-20

rule, γ = 2.161, see Appendix A - so the economy is dangerously close to some kind of

singularity (and so is information, WWW) - there might be a reason for this, because

civil wars / revolutions do happen as a matter of historical fact)

6. However, the “income disparity” as measured by some kind of variance (2nd moment)

would diverge. The problem lies in the high-income limit. “The folks are so rich out

there, they destroy the 2nd moment / Bell curve!”

7. With the BA network generator, one can code up a computer program to compute the

average minimum distance between two nodes. A basic algorithm is following: every

nodes keeps a list of its nearest neighbors (d = 1). Randomly pick a node j as the

observation origin. In the array of nodes i = 1..N , label i = j (d = 0, or tier 0)

and j’s 1st neighbors (d = 1, or tier 1). Then go through tier 1’s nearest neighbors,

label those who do not belong to tiers 0-1 as tier 2. Then go through tier-2’s nearest

neighbors, label those who do not belong to tiers 0-2 as tier 3, etc. This in effect ranks

the network nodes according to their distance to a randomly chosen j. We can pick a

few random j’s, and then we can compute the statistics. For BA generated network,
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the result turns out to be [48]

〈d〉 ∼ lnN

ln lnN
(35)

which is rather close in form to the empirical logarithmic law (21). The reason for the

small-worldness of BA network is that because of the high-k nodes (the “vital few”),

which provide hub-like connections to the populace.

By modifying the Barabasi-Albert method [33] of generating random graphs, one may be able

to obtain other power law exponents. It is important to note that even the Barabasi-Albert

method can generate a power law distribution, and growth and preferential attachment

are indeed important ingredients in many systems, not all power law distributions can be

correctly explained by the Barabasi-Albert method. For example, the so-called self-organized

criticality (SOC) can also generate power law distribution [40, 49, 50].

Many of the problems in society or nature are highly amenable to agent-based computer

simulations. An agent is an entity with internal degrees of freedom, and react to its envi-

ronment according to certain rules. For example, molecular dynamics (MD) simulation is

agent-based simulation: the agents being the atoms (with position and velocity dof), who

interacts with its neighboring atoms by interatomic forces, and evolves according to New-

ton’s equation of motion. One may simulate how pedestrians walk in a computer simulation

[51, 52], how people respond to rumors in a community, or how bacteria spread on petri dish

culture or viral agents in an epidemic. These simulations are quite similar to how massively

multiplayer online games (MMOG) are played: each agent has internal variables, and evolve

according to “local rules”. Nowadays, with PC having tens of gigabytes of memory, and a

simple agent may cost ∼ 102 bytes of storage, one can easily simulate ∼ 107 agents, which is

the population of NYC. Some highly nontrivial results can be gained from these agent-based

computer simulations, for instance in the BA model, one can directly check if the analytically

predicted (32), (35) work or not. In many cases, it is much easier and faster to obtain the

numerical simulation results first, and then one has to spend a long time to rationalize the

result in “human comprehensible” form.

The agent-based computer simulations contrast with the continuum-field based simulations,

where one solves partial differential equations of spatial fields. These spatial field could be

the density ρ(x, t) or chemical concentration c(x, t), temperature T (x, t), velocity v(x, t),

wavefunction ψ(x, t), etc. A famous equation in thermal hydraulics is the Navier-Stokes
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equation:

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p+ µ∇2v + f (36)

In physics, a famous development is how one can go from atoms-based picture to a field-

based picture like (36), through statistical theory like the Chapman-Enskog development.

In parallel, one can think about how to connect agent-based computer simulations (such as

MD or lattice gas automata) with continuum-field based simulations [53, 54, 55, 56]. To go

from millions or billions of agents to a single or a few fields is one form of coarse-graining.

In coarse-graining, one reduces the effective number of degrees of freedom that one tracks

in the simulation. For example, the validity of some model like (36) is that (a) the fluid

can be approximated as incompressible, (b) only the v(x, t) is important, all other dof, such

distribution of atom velocites, are slaved to v(x, t), and (c) ∇v is small enough that one falls

in the linear-response regime of viscous flow characterized by the linear viscosity µ, etc. But

even for a model like (36), for large enough Reynolds number Re ≡ ρvL
µ

, turbulence develops

where small eddies reside in large eddies, which cause direct simulation to be impossible. So

higher level coarse-graining over the eddies may need to be developed.

1.3.5 Self-Organization and Emergent Behavior

The simple model in 1.3.4 based on growth and preferential attachment gives us some insights

into why power-law could be so prevalent in nature and in society. The idea is interaction

between agents is important. Based on single-agent random walk in mean-field (the mean-

field being average economic climate like GDP growth rate, federal interest rate, etc.), one

can get log-normal distribution but not the power law. In other words, based on uncorrelated

vicissitudes of personal fate on top of an average societal drift (productivity increase), one

should expect a somewhat longer tail than exponential, but not the power-law kind of long

tail (with Pareto 80-20 rule, γ = 2.161, see Appendix A), where 2nd moment in wealth

diverges.

The reason that some people get so rich is not only that they are hardworking and smart

in an average environment, but also that they get to know and associate with other rich

people. To give an example, if a great negotiator is put in a fish market, after 10 minutes

of good bargaining, he may gain 10 dollars (buying/selling a fish). If the same negotiator

with personal charm is put in the conference room of a billionaire, after 10 minutes of good

bargaining, he may gain 10 million dollars (buying/selling a cooperation). Interactions,

and in particular preferential attachment, is indeed important. The social network of a
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billionaire likely includes a lot of other billionaires. The risk and opportunity landscape (the

“environment”) that this billionaire is in direct contact with is very different from the average

environment that populace are in contact with, thus the mean-field approximation does not

apply to the billionaire, due to his/her preferential attachment. Overtime, a hierarchical

structure could develop in society, WWW, or in biosphere.

A very strong form of interaction is heredity. Based on the idea of heredity plus muta-

tion, Darwin developed the theory of evolution. Biological evolution is the first of a series

of models on large number of agents with growth (death) and interactions, now generally

called Emergent Behavior. Emergent behavior are nowadays very amenable to agent-based

computer simulations.

1.4 Error and Sensitivity Analysis

Define absolute error (or residual):

RA ≡ Ã− A (37)

where A is what a quantity actually is, and Ã is what one thinks it is. RA has same unit as

A.

Define relative error

rA ≡ RA

A
(38)

R and r are theoretically defined, but often unknown initially in modeling because we do

not know A (unless we are doing calibration tests on our models).

Error propagation due to input uncertainty:

R[f(x1, x2, ..., xN)] ≡ f(x̃1, x̃2, ..., x̃N) − f(x1, x2, ..., xN)

≈ (∂x1f)Rx1 + (∂x2f)Rx2 + ...+ (∂xN
f)RxN

(39)

if the errors are small and we are in the “linear regime”. Also, the above assumes f(·) is

an ideal function and has no “calculation error”, such as roundoff error in a floating-point

calculation.
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Consider an example

f(x, y) =
1000 + x

y
(40)

Suppose both x, y are of order 1: x, y ∼ O(1), we can appreciate the result is much more

sensitive to y input than to x input.

In the “linear regime”, relative error:

|rA| ≈ |Rln |A|| (41)

and we have

r[f(x1, x2, ..., xN)] = (∂x1 ln f)Rx1 + (∂x2 ln f)Rx2 + ...+ (∂xN
ln f)RxN

= (∂ln x1 ln f)rx1 + (∂ln x2 ln f)rx2 + ...+ (∂ln xN
ln f)rxN

(42)

mapping dimensionless quantities to dimensionless quantity. The above comes in quite handy

when we have multiplicative and power-law dependences, for example

f(x, y) = x3y5 (43)

and rx = 0.03 and ry = −0.01.

In any particular instance, the positive and negative of the input error may partially cancel

to reduce the magnitude of the total error. This is called error cancellation.

But errors may also reinforce ((∂ln xi
ln f)rxi

’s all in the same sign). We note that the input

data may not be statistically independent of each other.

In probability theory,

E[xi] ≡
∫
xiρ(xi)dxi (44)

and the variance

Var[xi] ≡ E[(xi − E[xi])
2] = E[x2

i ] − (E[xi])
2. (45)

One may also define covariance

Cov[xi, xj] ≡ E[(xi − E[xi])(xj − E[xj])] (46)
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The covariance matrix is symmetric and positive definite, and

Cov[xi, xi] = Var[xi] (47)

by definition.

If two random variable xi, xj are independent of each other, their covariance is zero:

Cov[xi, xj] = 0 (48)

(but not the other way around). Independence is defined by

ρ(xi, xj) = ρ(xi)ρ(xj). (49)

The E[] operator is a linear operator, meaning

E[ax+ by] = aE[x] + bE[y], (50)

whereas the Cov[] and Var[] operators are quadratic:

Var[ax+ by] = Cov[ax+ by, ax+ by] = a2Cov[x, x] + 2abCov[x, y] + b2Cov[y, y]. (51)

More generally,

Var[
∑

i

aixi] =
∑

i

∑
j

aiajCov[xi, xj]. (52)

Error cancelation or reinforcement can happen in any particular instance, probabilistically.

So we are interested in the mean and variance of r[f(x1, x2, ..., xN)]:

E[rf ] = (∂ln x1 ln f)E[rx1 ] + (∂ln x2 ln f)E[rx2 ] + ...+ (∂ln xN
ln f)E[rxN

], (53)

and

Var[rf ] =
N∑

i=1

N∑
j=1

(∂ln xi
ln f)(∂ln xj

ln f)Cov[rxi
, rxj

]. (54)

The above formulation using variance-covariance matrices can be seen in for example the

assessment of uncertainties in nuclear reactivity data [20].
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Suppose the input errors are truly statistically independent, then we obtain

Var[rf ] =
N∑

i=1

(∂ln xj
ln f)2Var[rxi

]. (55)

Similarly, we have

Var[Rf ] =
N∑

i=1

N∑
j=1

(∂xi
f)(∂xj

f)Cov[Rxi
, Rxj

]. (56)

and in the limit of independent errors,

Var[Rf ] =
N∑

i=1

(∂xi
f)2Var[Rxi

]. (57)

In other words, if the sensitivities (∂xi
f) are all of similar magnitude, the standard deviation

of combined error would scale as N1/2, and the relative error would scale as N−1/2, in the

limit of large N , due to prevalence of error cancellation.

The language above on error propagation and senstitivity analysis is quite useful, but with

qualifications:

1. Many power-law distributions do not have 2nd moment, for instance ρ(x) ∼ x−3,

making the language above unusable. “Linear regime” error analysis are doomed to

fail in these cases and one must study the nonlinear nature of the model in detail to

understand error propagation.

2. While the mean and variance of a distribution are often used to characterize a statistical

behavior, these moments reflect population averages that sometime obscure the so-

called extreme value (EV) [57, 58, 59] information, which concerns the maximal and

minimal values in a sample. The importance of EV can be appreciated by considering,

for instance, the significance of world record in sports, or Bill Gates and Warren Buffett.

These “black swans” that bound the behavior of models are important to understand,

but they are often not amenable to the language based on variance and covariance.
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1.5 On sampling random distribution and coarse-graining

In agent-based simulations, one deals with discrete data set like {wi}, i = 1..N , where the

sequence may be unsorted to denote its unstructured-ness. In continuum simulations, one

deals with field, such as a density field ρ(w). In this section, we look at how one may go from

one representation to another. To go from ρ(w) → {wi}, we could call it fine-graining,

while to go from {wi} → ρ(w), one could call it coarse-graining. In statistics, the former

operation is called sampling, whereas the latter operation is called inference. It turns out

that in both operations, it is better to work with the cumulant or Cumulative Distribution

Function (CDF), rather than the Probability Distribution Function (pdf) itself.

Imagine a probability density ρ(w), with∫ ∞

−∞
ρ(w)dw = 1 (58)

The integral ∫ w

−∞
ρ(w′)dw′ = C(w) (59)

is called cumulative distribution function, with

C(−∞) = 0, C(∞) = 1. (60)

Generally speaking, given an analytical ρ(w), we can either get C(w) in closed form, or at

least a good spline representation.

Draw a binodal ρ(w), and the corresponding C(w). It seems that by drawing a uniformly

random number η, and then solve

η = C(w) (61)

the solution w will give the right distribution ρ(w). Below we can prove it:

dη = ρ(w)dw (62)

The probability dP of drawing between (η, η + dη) is just

dP = dη (63)
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which corresponds to (w,w + dw). So the probability density generated is just

dP

dw
=

dη

dw
= ρ(w) (64)

which is what we want.

If C(w) is in closed form, there might be an analytical solution to (61). Otherwise one may

have to solve it by nonlinear equation root solvers like the Newton-Raphson method.

On a related matter, when collecting statistics {wi}, i = 1..I and trying to come up with a

parametrized form to fit for ρ(w), one can either directly fit ρ(w) to binned histograms on

{Wn},

ρ(w = Wn) ≈ hn ≡
∑

iH(wi − Wn−1+Wn

2
)H(Wn+Wn+1

2
− wi)

IWn+1−Wn−1

2

(65)

where H(·) is the Heaviside step function, or one could fit C(w) to the cumulative statistics:

C(w = Wn) ≈ Cn ≡
∑

iH(Wn − wi)

I
(66)

with constraints C(w → −∞) = 0 and C(w → ∞) = 1, and then differentiate the smooth

form
dC(w)

dw
= ρ(w). (67)

The latter approach is usually preferred, because

1. It is smoother and less prone to statistical fluctuations than directly fitting the his-

togram.

2. One gets an analytical form that is guaranteed to satisfy the normalization rule∫ ∞

−∞
C(w)dw = 1

How do we perform the fitting? We could for example come up with a fitting form C(w; {λm})
that depend parametrically on {λm}), and minimize

f({λm}) ≡
∑

n

∣∣∣∣C(w = Wn; {λm}) −
∑

iH(Wn − wi)

N

∣∣∣∣2 (68)
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where f({λm}) is generally called the cost function. Generally, we need to have

M ≡ dim{λm} � N ≡ dim{Wn} ≤ I ≡ dim{wi} (69)

to achieve efficient coarse-graining and avoid overfitting (see 5).

Suppose wi ≥ 0, like exam scores, a possible form one could use might be

C(w; {λm}) = 1 − exp(−
M∑

m=1

λmw
m) (70)

with λ1 ≥ 0 and λM > 0 to guarantee the right limit as w → 0 and w → ∞. Alternatively,

one could use the “Fermi-Dirac” form:

C(w; {λm}) =
exp(

∑M
m=1 λmw

m) − 1

exp(
∑M

m=1 λmwm) + 1
(71)

which is also a “Hyperbolic Tangent” form that people often use in neural networks [60].

1.6 IEEE 754 Standard for Floating-Point Arithmetic

A byte is 8 bits (0 to 255 if unsigned char, -128 to 127 if signed char where 00000000 is

0, 01111111 is 127, 10000000 is -128, 11111111 is -1 in the “two’s complement” convention:

−aN−12
N−1 +

∑N−2
i=0 ai2

i). Two bytes gives 0 to 65535 (unsigned short) and -32768 to

32767 (short). Four bytes is a “word”, and ranges from 0 to 4,294,967,295 (unsigned int).

On 32-bit machines, unsigned int has the same size as as memory pointer (may not be true

on 64-bit machines), and therefore the maximum memory addressable is 4GB. The single

precision (SP) floating-point number also uses 4 bytes, and is called float in C, or real or

real*4 in Fortran.

The so-called double precision (DP) floating-point number takes 8 bytes, or 64 bits, to

represent a real number. According to IEEE 754 Standard, there is 1 sign bit (s), 11 exponent

bits (e), and 52 mantissa bits (m). DP is the predominant way in scientific computing

nowadays. It is highly reliable. When you see a serious problem in your code’s output, the

first suspicion should not be to blame roundoff error due to DP!

There is also something called extended precision, which uses 80 bits and is called long

double, that is implemented on some machines/OSs.
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The representation for DP “normal number” is

X = (−1)s(1.m1m2...m52)22
e−1023 = (−1)s(1 +

52∑
i=1

mi2
−i)2e−1023, (72)

where e is unsigned (0 to 2047) and takes value 1 to 2046 in the equation above, with e = 0

and e = 2047 reserved for special meaning. The m ≡ m1m2...m52 sequence following 1. is

also called the mantissa. The smallest positive “normal number” is Xsmallest ≡ 2−1022. The

largest “normal number” is Xlargest ≡ 21023(2 − 2−52). In Matlab, there is quantity called

eps, and eps = 2−52 = 2.220446049250313 × 10−16. It is the distance between 1.0 (which

can be represented exactly) and the next larger floating-point number. What one has is

essentially K ≡ 252 = 4, 503, 599, 627, 370, 496 equi-distant partitions between a power of 2

and the next power, left inclusive. The distribution of nearest-neighbors is symmetric except

for the interger power of 2, where the distant to the left neighbor is half of that to the right,

with itself belonging to the family on the right. For example, 1.0 and 2.0 are separated by

eps regular mesh, but 2.0 and 4.0 are separated by 2eps regular mesh. 2298 and 2299 are

separated by a regular mesh with mesh size 2246.

For any real number x

X = D(x) (73)

is stored in the computer instead, whereX is the nearest floating-point number to x (floating-

point numbers consist of ±0, the normal numbers and the subnormal numbers). (From now

on we will use capital letter X, Y , ... to denote what is actually stored in the computer

memory, and x, y, ... to denote the mathematical real number). In the event of a tie, the

rounding always go to the even-mantissa one. So 1+eps/2 rounds to 1.0 instead of 1+eps,

and 1 − eps/4 rounds to 1.0 as well. The error introduced in such precise rounding is not

random. When we add 1 + eps(1 + eps)/2, we get exactly 1 + eps, always.

If we define the absolute error of representing x in the computer as

Rx = D(x) − x (74)

where D(x) is actually what is stored. First consider x ∈ [1, 2], we see that most negative

Rx is achieved when

x = 1 +
eps

2
→ Rx = −eps

2
(75)
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while the most positive Rx is achieved when

x = 1 +
3eps

2
→ Rx =

eps

2
(76)

so if we consider x to be uniformly distributed over a “small region” inside [1, 2], then Rx is

basically uniformly distributed random number within the bounds

Rx ∈ [−eps

2
,
eps

2
] (77)

This mean, roughly speaking, the relative error of representation is

rx ∈ 1

x
[−eps

2
,
eps

2
] ≡ [−p(x), p(x)] (78)

with the relative precision of representation function

p(x) =
eps

2|x|
(79)

For x outside of the range [1, 2], we can in fact define relative precision bound

p(x) ≡ eps

2 · 2−bln |x|/ ln(2)cx
=

2bln |x|/ ln(2)c−1eps

|x|
(80)

where bc is the floor() function (round to an interger towards minus infinity) and denote

0 ≤ |rx| ≤ p(x) (81)

basically, |rx| is uniformly randomly distributed in the above bound for “small range” of x.

There are four types of numbers besides the “normal number” formula:

• e = 2047 (0x7ff in Hexadecimal), m = 0, s = 0, 1: represent ±∞. One get -Inf by -1/0.

If one tries Inf×(-Inf), one gets -Inf

• e = 2047 (0x7ff in Hexadecimal), m 6= 0, s = 0, 1: represent NaNs (there are 252 − 1

positive NaNs and 252 − 1 negative NaNs). There are three ways to create NaN:

(a) operations with a NaN in input, (b) Indeterminate forms like 0/0 or ±∞/±∞,

0×(±∞), ∞ + (−∞), and (c) Real operations that gives complex value results, for

example sqrt(−1.)
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• e = 0, m = 0, s = 0, 1: represents 0. These two zeros are tested equal, if one uses

double type in C. If one compares the two doubles by memcmp(), they will not be

equal of course due to the sign bit.

• e = 0, m 6= 0, s = 0, 1: represents “subnormal numbers”. They are called subnormal

because they are smaller in magnitude than the smallest normal number, which is

2−1022. The values of subnormal numbers are equidistant partitions between 0 and

2−1022:

S = (−1)s(0 +
52∑
i=1

mi2
−i)2−1022, (82)

which differs from (72) in two places. Thus the subnormal numbers are separated by

2−1074, and there are 252−1 positive subnormal numbers and 252−1 negative subnormal

numbers. This is the same separation as the normal numbers between 2−1022 and 2−1021.

The establishment of “subnormal numbers” is to eliminate underflow, so if X−Y = 0,

X must be equal to Y exactly.

The above deals with roundoff error in “representation”. Next let us talk about roundoff

error in “computation”. For problems such as celestial mechanics, where long prediction

time horizon is imperative, one does need to worry about what roundoff error can do.

In many textbooks on numerical algorithms, the roundoff error due to “computation”

C[X − Y ] ≡ (X − Y )(1 + r) (83)

where C[X − Y ] represents the outcome of the “-” computation, is represented by an in-

equality

|r| < ε (84)

where ε is a machine round-off constant (nominally eps/2).

The notation C[] mean computed result: while we used - operation, the definition holds for

+, -, *, / basic arithmatic operations. Note we do not write it as C() like a function, but as

C[] like a functional, to denote the fact that the digital outcome in principle (before IEEE

754) could depend on “X”, “-” and “Y ” individually, and not necessarily on just on X − Y .

Note also that C[] is capital, which means the outcome will also be stored in digital memory.

It also takes only digital inputs, thus

C[X − Y ] = C[D(x) −D(y)]. (85)
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However, it turns out IEEE 754 Standard performs much better than what many textbooks

believe it to be, (83). For example, consider

>> X = rand

X =

0.95012928514718

>> Y = sqrt(X)

Y =

0.97474575410574

>> Y^2

ans =

0.95012928514718

>> Y^2 - X

ans =

0

By trying the above many times, we find oftentimes Y 2 −X = 0, and sometimes it does not.

Why? It turns out this has to do with the precise manner of rounding in IEEE 754 compliant

machines. The IEEE 754 standard requires that +, -, *, / and sqrt gives

C[X − Y ] = D(X − Y ) (86)

in other words, the eventually stored result must be the rounding of the exact result. This is

the best arithmatic operation rule one can hope for, given the finite memeory representation.

In other words, there is only roundoff error of “representation” in IEEE 754, there is no

roundoff error of “computation”.

Given a machine-representable number X, we therefore has

Y = D(
√
X) (87)

The question is therefore whether

D(D(
√
X) ×D(

√
X)) = X (88)

We note that

D(
√
X) =

√
X(1 + r√X) (89)
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So

D((
√
X(1 + r√X))2) ≈ D(X(1 + 2r√X)) (90)

So we get equality D(X(1 + 2r√X)) = X if and only if

2|r√X | < p(X) (91)

and the probability to get equality is

P =
p(X)

2p(
√
X)

. (92)

The above formula is numerically verified by the Matlab code below:

% Precision.m : to test the precision of IEEE 754 arithmetic %

X0 = rand * 300;

X0 = X0 + rand;

Numerator = 2^( floor(log(X0) /log(2)) -1 ) / X0 * eps;

Denominator = 2^( floor(log(sqrt(X0))/log(2)) -1 ) / sqrt(X0) * eps;

prob = Numerator / Denominator / 2

N = 10000;

X = X0+sqrt(eps)*rand(N,1);

Y = sqrt(X);

sum(Y.^2==X) / N

Thus, the nature of IEEE 754 roundoff error can be more precisely understood than what

mere equation (83) indicates.

The IEEE754 standard can raise five flags: overflow, underflow, divide-by-zero, inexact,

invalid op. The raising of these flags does not affect the result. For example y = 1/0 stores

Inf in y while raising the divide-by-zero flag.
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2 What is a model

2.1 One dimensional traffic flow

Any driver who has stuck in a traffic jam knows how frustrating the experiences is: bumper

to bumper packed, jerky stop-and-go, with average speed much less than that of a pedestrian

(3 mph). Then suddenly, the jam clears, and one can accelerate to 40× in speed in tens of

seconds, as if the jam has never happened. To understand this phenomenon, we can do some

modeling [61, 51, 52].

There are two approaches to modeling traffic flow on a highway: continuum and discrete

agents. In the discrete agents approach, we model the center of cars {xi(t)}, with i = 1..N

and N approaching thousands. (the rule of thumb is to keep two-seconds distance between

two cars). In the continuum approach, we can model the car density ρ(x, t).

We will take the continuum approach first. However, it is still useful to think about the

discrete-agents picture, because it is closer to reality (how the situation actually is). To be

able to define ρ(x, t), we need to perform so-called coarse-graining, which can be a moving

average:

ρ(x, t) ≈
∑N

i=1H(xi(t) − x+ ∆x
2

)H(x+ ∆x
2
− xi(t))

∆x
(93)

where H() is the Heaviside step function. Coarse-graining is a tremendously important

concept, connecting the atomistic world with famous continuum equations like the Navier-

Stokes equation, diffusion equation, etc. One may of course define

ρmicro(x, t) =
N∑

i=1

δ(x− xi(t)) (94)

which is the same as (93) with ∆x → 0. However, even though the microscopic density

expression (94) is rigorous, it is not very useful because it is violently fluctuating with space

and time. By taking (93), we have sacrificed spatial resolution, but we have gained smooth-

ness. This tradeoff is always present in coarse-graining. Coarse-graining means throwing

away detailed information. In (93), the appropriate ∆x might be around about a mile.
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Other alternatives include Gaussian smearing:

ρ(x, t) ≈
N∑

i=1

e
(x−xi(t))

2

2σ2

√
2πσ2

= ρmicro(x, t) ∗N(x;σ) (95)

which gives one perfect differentiability, but also theoretically information of all particles are

mixed in ρ(x, t). There is another way for estimating ρ(x, t) based on cumulative distribution

in 1.5. Aside from the density field, there are other continuum fields like the velocity field

which may be estimated based on maximum likelihood inference if we know a distribution

function [53], or based on maximum entropy estimation [54].

Next, we establish a conservation law of cars:

∂tρ+ ∂xJ = 0 (96)

where J(x, t) is the flux of cars. In principle, we can compute the the flux of cars by watching

how many cars pass a certain post at x:

Jmicro(x, t) =
N∑

i=1

δ(x− xi(t))vi(t) (97)

so ∫ t2

t1

Jmicro(x, t)dt =
N∑

i=1

∫ t2

t1

δ(x− xi(t))vi(t)dt (98)

gives the counter variable Npass(t1, t2). However, (97) also needs to be coarse-grained, now

temporally. We are not going into that, because we are going to invoke the magic of consti-

tutive relation next.

(96) needs to be closed. The simplest way to close it would be to define

J(x, t) = J(ρ) (99)

Heuristically, we have

J ≡ ρv (100)

where v is the average velocity field. If we can find a constitutive law

v = v(ρ) (101)
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then we can close (96).

Is it reasonable to expect something like v(ρ) to exist? At a crude level, this makes some

sense. We expect the driver to behave according to the environment. If ρ = 0, like at 3AM,

the driver may drive at the maximum speed imposed by hardware or by the law: v = vmax.

On the other hand, on a jam-packed highway, all car (whether it is a Ferrari or a Beetle),

essentially stops. The density of the vehicles on the highway does seem to be the most

important factor controlling the average speed.

All models contain errors, as they are imperfect representation of the world. In above, we

group all vehicles together in one category, and define an average speed. In reality, we know

trucks (18-wheeler) and cars are quite different animals on the highway, so one might define

two densities ρcar, ρtruck, two conservation laws, as well as two average speeds

vcar = vcar(ρcar, ρtruck), vtruck = vtruck(ρcar, ρtruck) (102)

which might give more accurate description of the traffic. But this is still not the reality.

One can keep distinguishing RVs, vehicles with intoxicated drivers, etc., to get more and

more fine-layered descriptions.

Coming back to our simplest one-group model, we can define a jamming density ρmax

(bumper-to-bumper), which should be

ρmax =
1

〈L〉
(103)

where 〈L〉 is the average vehicle length. We will have

v(0) = vmax, v(ρmax) ≈ 0 (104)

The simplest model would be a straight line connecting the two limits:

v(ρ) = vmax

(
1 − ρ

ρmax

)
(105)

and then

J(ρ) = ρvmax

(
1 − ρ

ρmax

)
(106)
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We will basically have then a partial differential equation

∂tρ+ ∂xρvmax

(
1 − ρ

ρmax

)
= 0 (107)

The next step in modeling is to non-dimensionalize the equation. Let us define

ρ̃ ≡ ρ

ρmax

, (108)

we then have

∂tρ̃+ vmax∂xρ̃(1 − ρ̃) = 0 (109)

We can also define non-dimensioned space and time

x̃ ≡ x

〈L〉
, t̃ ≡ vmaxt

〈L〉
, (110)

and the PDE is converted into

∂t̃ρ̃+ ∂x̃ρ̃(1 − ρ̃) = 0 (111)

For simplicity, let us get rid of the tilde from now on:

∂tρ+ ∂xρ(1 − ρ) = 0 (112)

The gist is that the absolute magnitude of parameters ρmax and vmax does not affect the true

behavior of the system beyond scaling of axes. The important thing is the functional form.

(112) is the simplest model we can come up with. Yet it already manifests rich behavior

analytically and numerically, as it is related to the well-known Burgers equation,

∂tu+ u∂xu = ν∂2
xu (113)

a nonlinear partial differential equation (PDE). ν is the viscosity, which adds dissipation to

the system. When one takes ν = 0,

∂tu+ u∂xu = 0 (114)
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(113) is called the inviscid Burgers equation. By doing a

ρ =
1

2
− u (115)

mapping, we can transform (112) to (114).

Before tackling the nonlinear PDE numerically, it is useful to understand some analytical

properties of:

∂tρ+ ∂xρ(1 − ρ) = ∂tρ+ (1 − 2ρ)∂xρ = 0. (116)

A uniform traffic pattern is of course a solution to the above

ρ(x, t) = ρ0 (117)

with 0 < ρ0 < 1, and the vehicles are supposed to move with uniform speed 1−ρ0. However,

in reality, there would be many perturbations, for instance a driver picking up the phone, or

a pretty girl near the road. Thus

ρ(x, t) = ρ0 + δρ(x, t) (118)

is unavoidable, and provided the amplitude of δρ(x, t) is small, we are interested in how

δρ(x, t) propagetes.

We have

∂tδρ+ (1 − 2ρ0 − 2δρ)∂xδρ = 0 (119)

We note in the limit of infinitesimal δρ, we can throw out the O((δρ)2) term and obtain a

linearized PDE:

∂tδρ+ (1 − 2ρ0)∂xδρ = 0 (120)

and the solution is simply

δρ(x, t) = f(x− ct) (121)

with c = 1 − 2ρ0.

Several interesting observations can be made. First, c = 1 − 2ρ0, the velocity of pattern,

is different from v = 1 − ρ0, the velocity of vehicle. It is always slower, and in fact can be

negative when ρ0 > 1/2. That is, to a stationary observer on the curb, the disturbance to

vehicle density will be travelling downstream.

36



Second, consider a positive Gaussian perturbation with long wavelength onto ρ0 < 1/2

pattern. The crest moves in the positive direction, but with slightly slower speed than either

of the two feet. As result of that, the forward foot would move further away from the crest,

whereas the back foot would move closer. As a result of that, this Gaussian perturbation will

become tilted and asymmetric. The same thing also happens if ρ0 > 1/2. Thus, the inviscid

Burgers equation will develop shocks, which contain mathematical discontinuities. The time

to evolve from a continuous initial condition to a discontinuous solution (“weak solution”) is

called the “breaking” time, like the breaking of a surface seawave as it approaches the shore.

Note that two characteristics of a 1D function f(x) could be of interest. One is the wave-

length: we know that shocks could develop for either ρ0 > 1/2 or ρ0 < 1/2, where a very

fine feature develops, and we know this feature is asymmetric: when the commuter hits the

jam, one will hit the jam like a wall. But if somehow he manages to leaves the jam, he leave

it smoothly.

The other characteristics is the amplitude. The important question for the commuter is:

whether the maximum amplitude of the perturbation wave or shock discontinuity will in-

crease with time. In certain setups a very malignant instability will happen, where the

amplitude of the shock discontinuity will grow with time. In pedestrain motion, this often

leads to stampede [51, 52].

ρh ≡ 1 − ρ (122)

− ∂tρh + ∂xρh(1 − ρh) = 0. (123)

∂tρh − ∂xρh(1 − ρh) = 0. (124)

but we can define x̃ ≡ −x, and we obtain an equation

∂tρh + ∂x̃ρh(1 − ρh) = 0. (125)

which looks symmetric to (112). It says that a deficiency wave (hole wave) will tilt and

develop a break in the front.
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2.2 Precision and Accuracy

Precision and Accuracy are two different concepts regarding a model. Precision describes

the fluctuations of results reported from within the same model, while accuracy describes

the deviation of the model result (average) from true value of the system.

Precision and Accuracy are generally defined when averaging the system and the model over

certain parametric range. For example, IEEE754 is a specification for double precision,

which means that when storing a model variable (say generally between 1 and 2), the ac-

tual stored value for the variable could differ from the model variable by ± eps
2

, effectively

introducing some pseudo-randomness into a model variable. In addition to round-off error,

truncation errors etc. in a numerical algorithm (such as sampling times and number of sam-

ples) can introduce unbiased uncertainties into the reported result of the model. These can

reduce the precision of the model calculation.

Accuracy, however, has more to do with systematic deviations, that has to do with insufficient

physics represented in the model, or truncation errors that bias the results in a deterministic

manner. Classical molecular dynamics simulations of water viscosity, for example, will suffer

in accuracy from neglect of quantum vibrational effect and relativity. It also has a precision

problem, due to insufficient time sampling (one is supposed to go to ergodic limit). The

precision problem, however, should be ameliorated by running longer simulations, and on

higher-precision floating-point specifications. That is to say, with MD, one should eventually

expect a converged model result if one just put more computational resources into it.

A model calculation can have high precision and high accuracy, high precision but low

accuracy, or low precision and low accuracy. Low precision and high accuracy is called

“dumb luck”.

2.3 Numerical Algorithms to Solve Hyperbolic PDE

The traffic problem (and the Burgers equation (113)) bear uncanny resemblances to the

Navier-Stokes equation. To be able to understand numerical solutions to fluid problems, one

can learn a lot from solving (112) numerically, which is a Hyperbolic PDE.

The word Hyperbolic generally means wave propagation equations, such as sound wave,

electromagnetic wave, traffic wave (nonlinear), water wave, etc., where energy-conserved
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advection is the leading-order effect, and energy-dissipation is either ignored or is second-

order. The canonical example of Hyperbolic PDE is

∂2
t u = c2∂2

xu (126)

which describes sound wave in an elastic solid. In a rough sense

1

t2
=

c2

x2
(127)

where space and time (or wavevector and frequency) has a linear relationship. The word

Hyperbolic comes about as one can add a local oscillator term (plasmonic term)

∂2
t u = c2∂2

xu− ω2
0u (128)

in which case

ω2 = c2k2 + ω2
0 (129)

which generates a Hyperbola (one of three kinds of conical sections), with two asymptotic

wave velocities ±c.

In contrast, Parabolic PDE is dominated by energy-dissipation. The canonical example of

Parabolic PDE is the diffusion equation:

∂tu = ∂x(D∂xu) (130)

where u is chemical concentration, neutron flux, etc.

Both Hyperbolic and Parabolic PDE are time-evolution equations, where the arrow of time is

very important. In contrast, the so-called Elliptic PDE has no time. The canonical example

is the Poisson equation

∂2
xu+ ∂2

yu = 0 (131)

where u is the electrostatic potential. It can be considered as the equilibrium (time-

independent) limit of the multi-spatial-dimensional Hyperbolic or Parabolic PDE. A nu-

merical solver of Parabolic PDE thus can give answer to Elliptic PDE, although that is not

necessarily the most efficient scheme [62].

In this course, we will study numerical algorithms of Hyperbolic first, followed by Parabolic.

General PDEs tend to mix in both Hyperbolic and Parabolic characters. The so-called
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conservation laws are very important for Hyperbolic PDEs [63]. In (128), we have for example

energy conservation

C2 ≡
∫

(∂tu)
2 + c2(∂xu)

2 + ω2
0u

2

2
dx (132)

to be independent of time. As

Ċ2 =

∫
dx
[
(∂tu)(∂ttu) + c2(∂xu)(∂xtu) + ω2

0u(∂tu)
]

=

∫
dx
[
(∂tu)(c

2∂xxu− ω2
0u) + c2(∂xu)(∂xtu) + ω2

0u(∂tu)
]

= 0. (133)

And in (112), we have mass conservation

C1 ≡
∫
ρ(x, t)dx (134)

with

Ċ1 =

∫
∂tρdx = −

∫
∂x(ρ(1 − ρ))dx = 0 (135)

as well as energy conservation

C2 =

∫
ρ2

2
dx (136)

with

Ċ2 =

∫
ρ∂tρdx = −

∫
ρ(1 − 2ρ)(∂xρ)dx = −

∫
∂x

(
ρ2

2
− 2ρ3

3

)
dx = 0 (137)

Indeed, a PDE that takes the form

∂tρ+ ∂xJ(ρ) = 0 (138)

has infinite number of conservation laws, since

d
∫

ρn

n
dx

dt
=

∫
ρn−1(∂tρ)dx = −

∫
ρn−1∂xJ(ρ)dx =

∫
J(ρ)∂x(ρ

n−1)dx

=

∫
(n− 1)J(ρ)ρn−2(∂xρ)dx (139)
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Generally speaking, (n− 1)J(ρ)ρn−2 is integrable, meaning we can find K(ρ) such that

dK(ρ)

dρ
= (n− 1)J(ρ)ρn−2 (140)

(imagine J(ρ) is a polynomial) and so the last term is
∫
∂x(K(ρ))dx which generally vanishes.

If {ρn} are conserved quantities, then arbitrary function
∫
f(ρ)dx should also be conserved.

This imposes severe constraint on the behavior of the dynamics, since the outcome of the

wave-steepening can not raise the amplitude of ρ(x, t) without constraint: it can only steepen

the slope ∂xρ without punishment, since the ∂xρ term is not in the conservation laws.

Such plethora of conservation laws is in contrast with (130). While mass is still conserved,

the energy

C2 =

∫
u2

2
dx (141)

is monotonically decreasing with time

Ċ2 =

∫
u∂tudx =

∫
u∂x(D∂xu)dx = −

∫
D(∂xu)

2dx. (142)

Given a positive diffusivity

D = D(u) > 0, (143)

the left hand side is always negative. The integrand D(u)(∂xu)
2 > 0 is called the dissipation

kernel: it describes the rate of energy dissipation per unit distance. We see already that the

role of diffusivity D (or viscosity ν) is to “smear” things out and reduce the “roughness” of

the profile, since only then can
∫
udx (the average) be conserved, while

∫
u2dx (related to

the variance) can monotonically decrease.

Now consider the simplest Hyperbolic PDE

∂tu+ c∂xu = 0 (144)

which is linear. The connection of (144) with (126) is that, formally, (126) can be written as

∂tu + C∂xu = 0 (145)

with

u =

[
u1

u2

]
, C =

(
0 c

c 0

)
. (146)
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(144) has the well-known solution:

u(x, t) = u0(x− ct) (147)

where u0(η) is the initial condition. However, let us see whether a certain numerical algorithm

can produce this solution. The simplest scheme is the forward time centered space (FTCS)

method, where we approximate

∂tu(xj, tn) =
un+1

j − un
j

∆t
+O(∆t), (148)

∂xu(xj, tn) =
un

j+1 − un
j−1

2∆x
+O(∆x2) (149)

on a regular space time grid

xj = x0 + j∆x, tn = t0 + n∆t. (150)

In (148) and (149), we see the errors made are bounded by O(∆t) and O(∆x2), which are

promised to be progressively smaller if the solution gets smoother and smoother. However,

by the same token, they are not promised to work if the solution contains a sharp shock,

or high frequency noise, that endanger the differentiability of the function. So, will FTCS

work?

Unfortunately the scheme does not work, as shown below

xmesh=64; xmin=0; xmax=2*pi; xdel=(xmax-xmin)/xmesh; x=xmin+xdel/2:xdel:xmax;

u=(x>pi); plot(x,u,’o’);

% u=sin(x)+rand(1,xmesh)*sqrt(eps); plot(x,u,’o’); %

c=1; tdel=xdel/c*0.1;

while(1)

u = u - tdel*c*(u([2:xmesh 1])-u([xmesh 1:xmesh-1]))/2/xdel;

plot(x,u,’o’); drawnow;

end

If an algorithm like above does not work for (144), there is no hope it could work for (112).

To understand what happens, let us perform the so-called von Neumann stability analysis, a

lasting contribution of John von Neumann to computational science. The basic philosophy
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is that even though we insinuate a set of numbers {un
j } to be “closely related” to u(x, t) by

using the letter u in both (and by setting {u0
j} to u(xj, t = 0)), {un

j } evolve by a discrete

iterative relation, while u(x, t) by a continuous PDE. They are not equivalent. In other

words, {un
j } evolve by a set of “simulator” rules in its own world, which is not the same as

the real rules in an actual world, where time and space are infinitesimally divisible.

The discrete iterative relation is guaranteed to mimic u(x, t) at the beginning, by the error

bounds O(∆t), O(∆x2). That is all the guarantee there is - the so-called “accuracy” guar-

antee. In other words, if the profile now {un
j } is “nice”, the next step profile {un+1

j } will

contain error, but will still be quite “nice” (maybe a little bit less nice, though). But the

discrete iterative relation itself may be intrinsically unstable. That is, if the profile now is

not very nice, will the next-step profile completely go nuts, that is, become totally ugly and

unacceptable? That is akin to the difference between so-called “optimal design” and “robust

design”. Also, there is a saying, “the perfect war plan does not survive first contact with the

enemy”. von Neumann pointed out why below, in the context of a discrete iterative relation.

Consider what one is actually doing in the computer (instead of what one thinks one is doing,

which is solving (144)). Let us first presume we have the perfect computer, that is, there is

no IEEE 754 roundoff error. Then, it can be shown that

un+1 = Aun (151)

where A is a constant, tri-diagonal sparse matrix. That is all there is to it. In this case, one

just has

un = A · A · ...Au0 = Anu0 (152)

For such a scheme to be stable - that is, nothing explodes in one’s face - one needs all the

eigenvalues {λk} of A to be

|λk| ≤ 1. (153)

Otherwise, small arbitrary noise in u0 and elsewhere (for example the ubiquitous IEEE 754

roundoff noise), will get exponentially amplified with n, and though their amplitude may

initially be so small (eps level) as to be undetectable, can eventually inundate the true signal.

(An example is the feedback in a microphone-speaker system, if the gains are tuned too high,

you will hear eardrum-piercing noise instead of the voice).
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Thus, we can know whether the iteration is stable or not by diagonalizing A:

Avk = λkvk, k = 0..J − 1 (154)

So collecting these column vectors in a matrix

A (v0,v1, ...,vJ−1) = (v0,v1, ...,vJ−1)


λ0

λ1

. . .

λJ−1

 (155)

we have

AV = VΛ, (156)

where the matrices

V ≡ (v0,v1, ...,vJ−1) , Λ ≡


λ0

λ1

. . .

λJ−1

 (157)

If A is real and symmetric, then {λk}’s are all real. If A is real and asymmetric, λk may

contain imaginary part but if so will always come in pair of complex conjugates. Then we

have

A = VΛV−1. (158)

For so-called linear translationally-invariant system, there is translational symmetry to A,

which can be used to diagonalize it. What one does is to hypothesize the eigenvector to take

a planewave form (the so-called Bloch theorem in solid state physics):

(vk)j = exp

(
i2πkj

J

)
(159)

where

J =
xmax − xmin

∆x
(160)

is the number of spatial grid points. By plugging (159) into the LHS (left hand side) of

(154), we can check that (154) is indeed satisfied component-by-component, with component-
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independent eigenvector

λk = 1 − c∆t
exp

(
i2πk

J

)
− exp

(
− i2πk

J

)
2∆x

= 1 −
ic∆t sin

(
2πk
J

)
∆x

. (161)

So all

|λk| > 1, k = 1..J − 1 (162)

eigen-modes are unstable. The FTCS rule is therefore unconditionally unstable.

Let us try the so-called first-order upwind method

un+1
j − un

j

∆t
+ c

un
j − un

j−1

∆x
= 0 (163)

The word “upwind” means that since information is propagating from left to right in the

original (144), i.e., the left part will have no idea of what is on the right, we should preserve

the same qualitative property in the simulator world.

On first look, (163) seems to give us a less accurate method than FTCS - and it does, on a

short timescale. But let us perform the von Neumann stability analysis

λk = 1 − c∆t
1 − exp

(
− i2πk

J

)
∆x

= 1 − c∆t
1 − cos

(
2πk
J

)
∆x

− ic∆t
sin
(

2πk
J

)
∆x

(164)

Define

θ ≡ 2πk

J
, α ≡ c∆t

∆x
(165)

we have

λk = 1 − α+ α cos θ − iα sin θ (166)

|λk|2 = (1 − α)2 + 2(1 − α)α cos θ + α2 = 1 − 2α(1 − α)(1 − cos θ) (167)

We note that if cos θ = 1 (k = 0, the constant wave), then λk = 1 as it should be. But if

cos θ = 0 (k = J/2, the fast oscillating wave), then

|λk|2 = 1 − 4α(1 − α) (168)

In order for those waves to be decaying in time, we need to have

0 < α =
c∆t

∆x
< 1 (169)
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The

0 <
c∆t

∆x
(170)

is just the upwind condition, whereas

c∆t

∆x
< 1 (171)

is called the Courant-Friedrichs-Lewy (CFL) condition [64].

xmesh=64; xmin=0; xmax=2*pi; xdel=(xmax-xmin)/xmesh; x=xmin+xdel/2:xdel:xmax;

% u=sin(x)+rand(1,xmesh)*sqrt(eps); plot(x,u); %

u=(x>pi); plot(x,u,’o’);

c=1; tdel=xdel/c*0.1;

while(1)

u = u - tdel*c*(u-u([xmesh 1:xmesh-1]))/xdel;

plot(x,u,’o’); drawnow;

end

Running the above, we note that the amplitude of the solution decays with time. This can be

expected, since all the eigenvalues except the k = 0 one has modulus < 1. So this first-order

upwind method is not perfect, but at least it does not blow up in our face, and it dies off

“gracefully”. If we think about what we need most out of a numerical simulation, accuracy is

actually not the most important thing. The most important thing is the numerical simulator

captures qualitative features of the solution, that it captures the main physics. Here we could

argue that the constant translation speed is the main physics, which the first-order upwind

method shows for both sharp shockwave and smooth wave. Without it, “accuracy” has no

use, because no one actually cares about what happens to the tenth digit of {un
j } when n = 5

- “accuracy” here means short-term accuracy, or “local truncation error” - what we cares is

whether {un
j } still makes sense when n = 500 or n = 50, 000, the long-term accuracy if you

may. Later we will develop methods with better accuracy, but capturing qualitative features

under all circumstances is always more important than accuracy. To have that, we must first

have stability, that is, the solution does not blow up at n = 50 or n = 100.

The Lax method[65] is another variant to save FTCS, by replacing

un
j →

un
j+1 + un

j−1

2
(172)
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in FTCS:

un+1
j =

un
j+1 + un

j−1

2
− c∆t

un
j+1 − un

j−1

2∆x
(173)

The local truncation error due to the Lax replacement is O(∆x2). Stability analysis of (173)

gives

λk =
eiθ + e−iθ

2
− c∆t

eiθ − e−iθ

2∆x
= cos θ − iα sin θ (174)

Again, we see that in order for |λk| ≤ 1, there needs to be

α ≤ 1 (175)

Indeed, if we let α = 1, we get |λk| = 1 for all modes. And indeed, for this very special

choice of ∆t, (173) is just reduced to

un+1
j = un

j−1 (176)

which is the exact solution for the problem in the case of ∆t = ∆x/c. (not a general algorithm

for exact solution though, if smaller ∆t is desired).

For both first-order upwind and Lax method, we see that (171) is required for stability.

Generally speaking, CFL (also called Courant condition) is a necessary condition (sometimes

not sufficient condition) for the stability of hyperbolic PDE algorithms, that uses explicit

time integration. The reason is the following. A point in space in the actual PDE sends

out a time cone. This actual time cone must be included in the numerical time cone of

the algorithm, because one can think of the algorithm as a design of the discrete iterative

relation to sculpture the numerical time cone (numerical Green’s function, the propagator

An) to fit the actual time cone (actual Green’s function). It is only possible to do this if

the input space (the space to be sculptured) is larger than the output space, which is the

space-time characteristics of the original PDE to be fitted. If this is not the case, we can

never get sensible behavior, because the algorithm is asked to predict (in the long term)

something it never has the necessary information for, as the actual lines of characteristics lie

outside the numerical time cone. On the other hand, the algorithms we come up are greedy

and earnest in the sense they rely on local finite difference to get the best advantage locally

- they perform asymptotically better if profile is smoother (longer wavelength) - so these

algorithms essentially has to extrapolate in order to get good predictions in the short term,

which they indeed can for a few timesteps - but such extrapolative predictions deteriorate

in quality when there are sharp features, or equivalently when the prediction time gets
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long. In essence, CFL is because locally accurate extrapolation based on Taylor expansion

(polynomial basis) invariably leads to schizophrenia when extrapolated further and further,

whereas supported polynomial interpolations do not have this problem.

The same issue of information flow and time cone relation also explains why upwind difference

is a good idea, whereas downwind difference is a recipe for disaster. Again, any kind of finite

difference gets better behaved when the function gets smoother and smoother. But there is

no local guarantee from the finite-difference scheme itself for shockwave, or high-frequency

noises (non-differentiable function). Thus, a particular finite-difference scheme that still

“works” for a shock wave is actually quite a miracle. The CFL condition outlines a necessary

condition for achieving such a miracle. This miracle can only be better understood from a

global analysis perspective (the nonlocal von Neumann eigenmode analysis), and also from

numerical conservation laws.

For so-called implicit time-integration methods, which we will introduce later, the CFL con-

straint for stability is often a non-issue, because the numerical time cone includes everything

and therefore the actual time cone.

Coming back to the Lax method (173), we may subtract off un
j from both sides

un+1
j − un

j =
un

j+1 + un
j−1 − 2un

j

2
− c∆t

un
j+1 − un

j−1

2∆x
(177)

so

un+1
j − un

j

∆t
=
un

j+1 + un
j−1 − 2un

j

2∆t
−c

un
j+1 − un

j−1

2∆x
= −c

un
j+1 − un

j−1

2∆x
+

(∆x)2

2∆t
·
un

j+1 + un
j−1 − 2un

j

(∆x)2

(178)

In the long-wavelength limit, the above is just

∂tu+ c∂xu = νnum∂xxu, (179)

where νnum is a variable viscosity

νnum ≡ (∆x)2

2∆t
(180)

that depend on the discretization, but generally quite small since the CFL condition tells

us ∆x ∼ ∆t. νnum is called the numerical diffusivity. So another way to think about Lax’s

method of solving (144) is that he introduced artificial dissipation into the simulator world to

damp out the instability in the FTCS method. While succesful in suppressing the instability,
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this also causes weak energy non-conservation (disspation) in the simulator world, which is

already predicted by |λk| < 1 for all k 6= 0. From (179) we see that while the mass is still

conserved:

C1(t) =

∫
dxu(x, t), Ċ1 = 0 (181)

the energy is not:

C2 =

∫
u2

2
dx, Ċ2 = −νnum

∫
(∂xu)

2 ≤ 0. (182)

While (181) and (182) are derived for the long wavelenth limit (179) of the Lax algorithm

(173), in the absence of IEEE 754 error it is possible to show same results for the numerical

mass

Nn
1 ≡ (∆x)

J−1∑
j=0

un
j (183)

Nn
2 ≡ ∆x

2

J−1∑
j=0

(un
j )2 (184)

based on the von Neumann analysis. We have

un
j =

J−1∑
k=0

(λk)
nak exp

(
i2πkj

J

)
, (185)

with the amplitude ak obtained by inverse Fourier transform of the initial profile {u0
j}:

ak = (V−1u0)k =
J−1∑
j=0

(V−1)kju
0
j (186)

We thus have

Nn
1 = (J∆x)(λ0)

na0, (187)

and as long as λ0 = 1 (which is satisfied by all the finite-difference schemes, when we plug in

a constant profile), we have numerical mass conservation. However, the numerical energy is

Nn
2 =

∆x

2

J−1∑
j=0

J−1∑
k=0

(λk)
nak exp

(
i2πkj

J

) J−1∑
k′=0

(λk′)nak′ exp

(
i2πk′j

J

)
(188)
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and the j-sum will cancel out unless k + k′ = J or 0. So we get

Nn
2 =

J∆x

2

J−1∑
k=0

(λkλJ−k)
n(akaJ−k) (189)

if we define λJ ≡ λ0 and aJ ≡ a0. Also, because we are using a discrete iterative relation

with all real coefficients, and the initial profile is real and all later profiles must be real, we

will have the complementarity condition

aJ−k = a∗k, λJ−k = λ∗k (190)

But since |λk| ≤ 1, the above will be monotonically decreasing with n. So just as the

“continuumized” equation (179) suggested, the numerical mass is rigorously conserved, while

the numerical energy is rigorously decreasing, for the Lax algorithm.

If a numerical algorithm has been shown to satisfy such monotonic energy dissipation law,

then certain class of instabilities cannot happen. For instance, we cannot have the profile

diverge to ∞. If only N1 is conserved, this can still happen because +∞ can be balanced by

−∞, but if N2 is bounded, this cannot happen.

In above, we have put the Lax algorithm under a scalpel and a microscope. For the simplest

linear PDE (144), while the exact solution conserves mass and energy, the Lax numerical

solution conserves mass but weakly dissipates in energy. Is weak energy dissipation a neces-

sary condition for stability of an algorithm? As we will see later, this is not true. We can

come up with better algorithms that is both stable and conserves energy.

The point of numerical algorithms is of course not to solve just linear PDEs, for which

we have exact solution. The point is to solve nonlinear PDEs, for example the “breaking”

time of Burgers equation, or soliton motion in Korteweg-de Vries (KdV) equation, etc., with

complex boundary conditions. But if an algorithm cannot handle (144), we cannot expect a

happy ending of it solving nonlinear PDE. Certainly, in the long-wavelength limit, nonlinear

PDEs is in effect linear PDEs for the perturbation (see the linearization treatment (118)-

(121)). The usual leap of faith is that if an algorithm has been demonstrated to be stable for

the linearized PDE, a bit more conservative ∆t should make it stable for the full nonlinear

PDE also. So, for sure we want to pick a ∆t with

0 <
c(ρ)∆t

∆x
< 1 (191)
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in the possible range of ρ’s for the traffic problem. Thus, a finer spatial mesh, which lower

the numerical dissipation (180) in absolute terms, must also be accompanied by finer time

step, as well. This will cause the computational complexity to scale at least as O((∆x)−2)

for hyperbolic PDE, if the solver is any kind of explicit finite-difference scheme.

3 Computational Quantum Mechanics

The time-dependent Schrodinger equation (TDSE[66]) is

i~
∂ψ(x, t)

∂t
= Hψ =

(
−~2

2µ
∇2 + V (x)

)
ψ(x, t), (192)

where µ is the reduced mass in the two-body problem, V (x) is the external potential, and

the Laplacian operator is

∇2 ≡ ∂2
x + ∂2

y + ∂2
z (193)

in 3D. Using reduced time and length unit

τ ≡ ~
Echar

, L ≡ ~√
2µEchar

(194)

where Echar is a characteristic energy scale of the system, we can transform the equation into

i∂tψ = Hψ = (−∇2 + V (x))ψ (195)

To simplify the analysis of numerical algorithm, let us first define a notation for discretization:

f(x) ↔ f (196)

where we map a function in continuous space to a discretized vector. An operator in space,

such as ∂x, can also be mapped into a matrix operator Px

∂xf(x) ↔ Pxf +O((∆x)m) (197)

m is called the order of the spatial discretization, m ≥ 1. There are many implementations
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of Px. We could use upwind difference

(Pxf)j ≡ fj − fj−1

∆x
(198)

with m = 1, or central difference

(Pxf)j ≡ fj+1 − fj−1

2∆x
(199)

with m = 2, etc. In 1D, the Laplacian operator can be represented as

(Lf)j ≡ fj+1 − 2fj + fj−1

(∆x)2
, (200)

and in 2D, the Laplacian operator can be represented as

(Lf)j0,j1 ≡ fj0+1,j1 + fj0−1,j1 − 2fj0,j1

(∆x)2
+
fj0,j1+1 + fj0,j1−1 − 2fj0,j1

(∆y)2
, (201)

which is called Runge’s five-point formula, first invented in 1908.

Note that in (201), even if we use two indices j0, j1, it is still the best to think f as a vector

(not as a matrix) in analysis, with 1D index

j ≡ j0J1 + j1 (202)

that runs between 0..J0J1 − 1.

Generally speaking, we will use bold upper-case symbols to denote operators on a discrete

data set:

g = Px(f) (203)

Many of these operators are linear, in which case they can be represented as matrices, and

then we can skip the brackets:

g = Pxf (204)

Once we defined an operator, it is important to follow its native definition throughout con-

sistently. For instance, we may follow (199) definition for discretized first derivative, and

(200) definition for discretized second derivative. But then

PxPx ≡ P2
x 6= L, (205)
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unlike the continuum versions of the operators. This is OK because

∂x ↔ Px (206)

is but an inexact mapping - this mapping is asymptotically accurate for smooth functions,

but breaks down for more and more non-differentiable functions (This is the reason we call

algorithms that still behave reasonably, like the forward-time upwind algorithm, in the face of

non-differentiable function, e.g. shockwave input, a “miracle”). So indeed, the inconsistency

is asymptotically small

P2
x − L = O((∆x)2) (207)

for smoother functions.

Let us first investigate 1D system. Suppose we discretize space only, and leave the time

continuous:

ψ(x, t) ↔ ψ(t) (208)

Suppose we adopt (200) definition of the Laplacian,

L =
1

(∆x)2


−2 1 1

1 −2 1

1
. . . 1

1 1 −2

 (209)

and also take the straightforward discretization for

V (x)ψ(x, t) ↔ Vψ (210)

where V is a diagonal matrix,

V =


V (x0)

V (x1)
. . .

V (xJ−1)

 (211)

but not translationally invariant in general. Then:

i∂tψ = (−L + V)ψ (212)
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We can define the discretized Hamiltonian operator in this case as

H ≡ −L + V (213)

H is a symmetric matrix by definition, and therefore should have real eigenvalues.

The exact solution to

i∂tψ = Hψ (214)

in the case of a time-invariant V (x), is just, formalistically

ψ(t) = exp(−itH)ψ(0). (215)

where exp(−itH) is a matrix:

P(t) ≡ exp(−itH) ≡
∞∑

n=0

(−itH)n

n!
. (216)

We call it the numerical propagator. Given the dimension of spatial discretization, a P(t)

matrix exists. (the radius of convergence of infinite sum (216) is infinite, meaning for any

H, as long as we sum enough terms, the sum always converges).

Unfortunately, for a numerical calculation, P(t) is not easy to obtain - because it is an infinite

sum, and it is also a dense matrix. So we need approximation for it. First, we use Trotter

formula:

P(t) = P(∆t)P(∆t)...P(∆t) (217)

In the limit of small ∆t, the propagation operator can be approximated in the small time

limit as

exp(−i∆tH) = I − i∆tH +O((∆t)2). (218)

Thus, if we go with this form of approximation, we have

ψn+1 = (I − i∆tH)ψn = ψn − i∆tHψn (219)

which is called explicit time-stepping, because the right-hand side of (219) can be evaluated

immediately. (219) rule is also equivalent to

i
ψn+1 −ψn

∆t
= Hψn (220)
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which is called the Forward Euler method. The name Forward means that once the present

state is known, it is straightforward to step forward in time.

xmesh=128; xmin=0; xmax=2*pi; xdel=(xmax-xmin)/xmesh;

x=(xmin+xdel/2:xdel:xmax)’;

v=(x>1.3*pi).*(x<1.5*pi); clf; plot(x,v,’r’);

V=diag(v);

e=ones(xmesh,1); L=full(spdiags([e -2*e e], -1:1, xmesh, xmesh));

L(xmesh,1)=1; L(1,xmesh)=1; L=L/xdel/xdel;

f=sin(x); plot(x,L*f,’o’,x,-sin(x),’r’);

H=-L+V;

u= exp(-4*(x-2).^2).*exp(i*6*(x-2)) + rand(xmesh,1)*sqrt(sqrt(eps));

plot(x,abs(u),’o’,x,v,’r’);

c=1; tdel=xdel^2/4*1;

while(1)

u = u - i*tdel*H*u;

plot(x,abs(u),’o’,x,v,’r’); drawnow;

end

However, this scheme does not work at all - it is unconditionally unstable. This can be easily

seen if we consider the discrete eigen-modes of H:

Hvk = εkvk (221)

Since H is discretized, the number of eigenmodes for (221) is not infinite as in continuum

space, but equals to J , the degree of discretization in space domain. For simplicity, let us

first take V = 0, then because we have discrete translational invariance in H = −L, we can

use (159) to diagonalize it. With (200), we get

εk = −e
iθk − 2 + e−iθk

(∆x)2
=

2 − 2 cos θk

(∆x)2
=

4 sin2(θk/2)

(∆x)2
, (222)

with

θk ≡ 2πk

J
, k = 0...J − 1. (223)
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For small k, θk is small and the energy dispersion relation in the computer world is

εk =
4 sin2(θk/2)

(∆x)2
≈ θ2

k

(∆x)2
=

(
2πk

J∆x

)2

(224)

which is nothing other than the kinetic energy of the continuum plane wave that the discrete

mode represents (we have absorbed the factor of 1/2 in kinetic energy expression ~2k2/2µ

in (194) also). In a continuum medium this parabolic relation will keep on going up until

infinite wavevector and infinite energy (e.g. free electron energy). In a discretized system

this will be truncated at:

0 ≤ εk ≤
(

2

∆x

)2

(225)

the maximum eigenvalue is reached for

k =
J

2
(226)

(if J is even) when k reaches the edge of the “first Brillouin zone (FBZ)” of this discretized

numerical lattice. Note that for such FBZ boundary mode on discretized numerical lattice,

+1,-1,+1,-1, the law of physics has broken down, the law of the numerical jungle has taken

over. However, normally one doesn’t care whether the physics is preserved here or not,

because the expected weighting of such high frequency mode (amplitude of power spectrum)

should be negligible here, for the physical phenomena we care about. That is, if the main

energy range of the physics phenomena we try to cover is 10 MeV, the numerical energy of

the FBZ boundary mode should be something like at least 100 MeV, for which the weighting

should be safely negligible - that is, if the numerical jungle does not generate cancer.

When V (x) is added to the problem, we lose translational symmtry in the discretized system,

so (159) is no longer a good eigenvector. But still, the symmetric matrix always have real

eigevalues. So the eigenvalue for the explicit scheme (219) is

λk = 1 − i∆tεk (227)

with

|λk| =
√

1 + (∆tεk)2. (228)

So we see that all the eigen-modes except the constant mode will have diverging amplitude as

time goes on. The fastest divergence is with the k = J/2 mode, which is the +1,-1,+1,-1,...
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mode on the grid. At each step, this highest-frequency mode would amplify by

|λk| =

√√√√1 +

(
∆t

(
2

∆x

)2
)2

, (229)

so the predicted behavior is that

1. For any ∆t, the scheme will always diverge, at long enough time, with the Brillouine

zone edge +1,-1,+1,-1,... mode taking over

2. Unless ∆t = α(∆x)2, with α being a small number, this feedback loop to generate

cancer will happen real fast, like within tens of steps.

The so-called Backward Euler method is based on another expansion of the propagtor:

exp(−i∆tH) = (I + i∆tH)−1 +O((∆t)2) (230)

where the matrix

(I + i∆tH)−1 ≡
∞∑

n=0

(−i∆tH)n (231)

differs from (216) starting from the second order. The reason to approximate P(∆t) by this

inversion formula is that if

ψn+1 = (I + i∆tH)−1ψn, (232)

then

(I + i∆tH)ψn+1 = ψn (233)

Another way to think the above is that

P(−∆t)ψ(t+ ∆t) = ψ(t) (234)

in other words, backward propagation in time (time inversion) is equally valid way to describe

the same dynamics, thus the name “Backward Euler”. The thinking here is that if Forward

Euler amplifies all modes with the +1,-1,+1,-1,... noise mode amplifying the fastest, then

reversing the arrow of time will quench all modes, with the +1,-1,+1,-1,... noise mode

quenched the fastest, which is what we want. To see this Backward time arrow, we see that
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(233) is equivalent to

ψn+1 + i∆tHψn+1 = ψn ↔ i
ψn+1 −ψn

∆t
= Hψn+1 (235)

Everything look the same as (220), except we replace Hψn by Hψn+1. The vector ψn+1

is unknown, however, therefore we have to solve for ψn+1 by solving a system of linear

equations, the Backward Euler equations (233), that takes the general form:

Ax = b (236)

(236) is probably the most famous equation in numerical analysis, where matrix A and

vector b are known quantities, and vector x is to be solved.

Formalistically, one can write the solution to (236) as

x = A−1b (237)

if A is an invertible matrix. But computationally, the sequence of numerical operations

implied by (237) is a very bad idea, because even if A is a sparse matrix, A−1 is dense,

so storage of A−1 matrix itself would cost O(J2) memory. In a 1024 × 1024 × 1024 3D

mesh, J ∝ 109, so J2 would require 109 GB of memory, which is clearly infeasible, even

for explicit storage. To get each entry of (A−1)ij, it would also take O(N) computation

(Gaussian elimination or Gauss-Seidel iteration). So going from a sparse matrix A → dense

sparse A−1 is O(J3) in ops complexity generally, which is also infeasible.

If we think about the above, the catch is that we do not really want the matrix A−1, all

its explicit entries. All we want is a vector x which satisfies (236). In Matlab, this desire is

expressed as

x = A \ b

If someone gives us A−1 for free, we can obtain x using (237) with O(N2) multiplications

and summations, if b is a random dense vector. However, we do not need solution to (236)

for every possible b. In a lot of situations, it is just a one-off thing. Therefore, many so-

called “matrix-free” methods have been developed to solve the problem (236). The point of

such “matrix-free” computation is that one never needs to store or use a dense intermediate

matrix. All one needs are sparse-matrix vector multiplications (O(N) complexity in memory
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and ops, which we can afford), and some kind of numerical iterations.

One may ask, are there situations where storing dense intermediate matrix like (I+ i∆tH)−1

(when we can afford it), would make sense? For example, what if we want to solve (233) for

many timesteps, or for many initial conditions, since (I + i∆tH)−1 does not vary with time

or initial condition? The answer to this question is that, again, the point of solving (195) is

mostly not solving (195) itself, which can be done once and for all by diagonalization - what

we are taught in quantum mechanics classroom. The point of analyzing algorithms for (195)

is so that these algorithms can be adapted to solve analytically intractable equations such

as the nonlinear Schrodinger equation:

i∂tψ = −1

2
∂2

xψ + κ|ψ|2ψ (238)

that occurs in optics and water waves, the time-dependent many-electron equations where

there are Hartree and exchange-correlation interactions that are evolving with time or requir-

ing self-consistency[67], and when V is time dependent-like an electron in electro-magnetic

field. In those contexts, the effective numerical propagator matrix needs to be updated with

time. Then, storing these dense intermediate matrices would really makes no sense. So the

scenarios where storing dense intermediate matrices make sense is very limited.

How can we understand the numerical stability of the implicit Backward Euler method?

This is where the propagator form

ψn+1 =
1

I + i∆tH
ψn, (239)

gives the most insight. By plugging in the eigenvector vk of (221), it is plain to see from this

nonlocal modal analysis that

λk =
1

1 + i∆tεk
(240)

Recall that εk is always real, so we have

|λk| =
1√

1 + (∆tεk)2
≤ 1. (241)

So all modes except the 0-mode are damped, with the the +1,-1,+1,-1,... noise mode damped

the fastest.

The Backward Euler method is unconditionally stable - it is stable for any ∆t. It is the first
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unconditionally stable scheme we have seen so far. It is also the first implicit method we

have seen so far. These two are related, because all explicit methods with sparse propagator

matrices are limited by the CFL condition, which is concerned with the degree of “off-

diagonal”ness in the propagator matrix. Because the numerical propagator in the form of
1

I+i∆tH
is a dense matrix, the necessary CFL condition for stability is trivially satisfied.

The Backward Euler looks like a good method, but it has deficiencies, foremost with numer-

ical mass and energy conservations. For the Schrodinger equation we have

C1(t) ≡
∫
dx|ψ(x, t)|2 (242)

and

C2(t) ≡
∫
dxψ∗(x, t)(−∇2 + V )ψ(x, t) (243)

which for a time-invariant V should be independent of t. Is this the case for numerical

versions of the continuum conservation laws?

Nn
1 ≡

∑
j

|ψn
j |2 = ψn†ψn (244)

and

Nn
2 ≡ ψn†Hψn (245)

where † means conjugate transpose of a vector or a matrix.

Without doing the details, we can guess they decreasing with n with Backward Euler, since

the amplitude decays. But do Nn
1 and Nn

2 decay monotonically with n? They do. This is

because

ψn =
∑

k

an
kvk, an

k = a0
k(λk)

n, (246)

and the amplitude of each mode is monotonically decreasing with time. Also, in N1 and N2,

the different modes do not talk to each other, since

v†
k′vk = δk′k (247)

Nn
1 ≡ ψn†ψn =

∑
k

|a0
k|2|λk|2n. (248)
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And for the similar reason, we have

Nn
2 =

∑
k

|a0
k|2εk|λk|2n. (249)

So far, all the stable time-stepping methods we have seen have certain degree of dissipation.

Is it possible to come up with a stable scheme without dissipation?

If we look at (248) and (249), we see we are between a rock and a hard place. If any of the

|λk| is greater than 1, we have instability. If if they are smaller than 1, we get dissipation.

It turns out, that there is a razor-sharp plane that we can stand, that is both stable and has

no dissipation. This can only happen if all

|λk| = 1, (250)

for all the numerical modes. What is a numerical propagator that can do this?

It turns out that the Crank-Nicolson propagator, invented by John Crank and Phyllis Nicol-

son [68] in 1947, can do the job, where one approximates the exact propagator by

exp(−i∆tH) ≈ I − i∆tH/2

I + i∆tH/2
+O((∆t)3). (251)

The above is also called the Cayley transform in matrix analysis.

Note that the local truncation error above is one order better than either Forward or Back-

ward Euler, since

(I − i∆tH/2)(I + i∆tH/2)−1

= (I − i∆tH/2)(I − i∆tH/2 + (i∆tH/2)2 + ...)

= I − i∆tH/2 + (i∆tH/2)2 − i∆tH/2 + (i∆tH/2)2 +O((∆t)3)

= I − i∆tH +
(−i∆tH)2

2
+O((∆t)3) (252)

where the first three terms agree with the exact expansion

exp(−i∆tH) = I − i∆tH +
(−i∆tH)2

2
+

(−i∆tH)3

6
+O((∆t)4). (253)

Thus, one has the added benefit of a locally more accurate method.
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The Crank-Nicolson propagator

PCN ≡ I − i∆tH/2

I + i∆tH/2
(254)

can be regarded as running Forward Euler by ∆t/2, and then running Backward Euler by

∆t/2. Without IEEE754 error, this is also equivalent to running Backward Euler by ∆t/2,

and then running Forward Euler by ∆t/2. This is because two matrix functions f(A), g(A)

of the same matrix always commute:

f(A)g(A) = g(A)f(A) (255)

so

PCN ≡ (I − i∆tH/2)(I + i∆tH/2)−1 = (I + i∆tH/2)−1(I − i∆tH/2). (256)

If we can use {vk} to diagonalize the numerical Hamiltonian H, one can use the same set of

eigenvectors to diagonalize PCN, with the eigenvectors

λk =
1 − i∆tεk/2

1 + i∆tεk/2
. (257)

We immediately noted that if εk is real, which it will be if H is a Hermitian matrix, then

|λk| = 1. It will also satisfy numerical mass and energy conservations, from (248) and (249).

Note that PCN is not a Hermitian matrix:

P†
CN = (I + i∆tH/2)(I − i∆tH/2)−1 6= PCN (258)

but it is a unitary matrix:

P†
CNPCN = (I + i∆tH/2)(I − i∆tH/2)−1(I − i∆tH/2)(I + i∆tH/2)−1 = I. (259)

So PCN has the same symmetries as the exact propagator exp(−i∆tH). In this regard, both

the forward Euler

PFE ≡ 1 − i∆tH (260)

and the forward Euler

PBE ≡ (1 + i∆tH)−1 (261)

numerical propagators are neither Hermitian, nor unitary. Fundamentally that is the reason
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for non-conservations. We can see that the numerical mass is conserved step-by-step, because

ψn+1†ψn+1 = ψn†
P†

CNPCNψ
n = ψnIψn = ψnψn. (262)

The above is in fact true for any numerical propagator that is unitary (related to time-

reversal symmetry). Energy conservation follows, since PCN is a function of H and therefore

commutes with H:

ψn+1†Hψn+1 = ψn†
P†

CNHPCNψ
n = ψn†

P†
CNPCNHψn = ψn†

Hψn (263)

In above, we have developed a numerical operator language to express finite-difference time-

stepping algorithms. This is a very powerful tool for understanding the behavior of the

computer world. Philosophically, we are approximating the true propagator in continuum,

which is infinite dimensional, to a multiply truncated approximation. This multiple trunca-

tion manifest in space (so the matrix size is finite), and in time (the order of the method).

Regarding the order, we are essentially expressing the true P(∆t) by multiplications of poly-

nomials of H, f(H), and inverse of polynomials of H, g(H)

Papprox = ...f(H)(g(H))−1... (264)

where H and its kins are sparse matrices. These operations onto a particular vector can be

efficiently done in the computer using matrix-free methods.

With this operator language, we are ready to deal with the issue of global error. Suppose

we run the Crank-Nicolson propagator PCN for

N =
t

∆t
(265)

steps. In the absence of IEEE754 error, we will conserve numerical mass and numerical

energy, so the behavior of possible numerical solution is “bounded”. But is it accurate?

How do we know, or how can we check, that a certain ψn really resembles ψ(x, t), not only

in mass and energy, but also in phase and mass distribution?

The above question is the same question Newton asked himself when he invented calculus.

Consider a finite intergral

f(t) =

∫ t

0

dt′g(t′) (266)
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with a complicated integrand g(t), so f(t) cannot be obtained analytically and has to be

obtained numerically. If one takes an integration scheme, say, trapezoidal rule, how does

one know a numerically meshed integration really gives what one think it should give for a

particular t, if one does not know what it should give in the first place? The magic is called

the convergence procedure. One takes

∆t → ∆t

2
(267)

compare the results, keep doing it until a trend emerges, which the difference between two

runs is getting smaller and smaller - like some kind of a power law with ∆t, that is best seen

on a log-log plot. And at some point when the difference gets smaller than a tolerance, one

calls it quit. At this point we say we have numerically converged.

A time-stepper (of PDE) is sometimes also called a time integrator, for a reason. To analyze

the error of PDE time-stepper, let us draw an analogy between f(t), which spits out a number

for a given t, with a time-depedent solution f(x, t), which gives a spatial field snapshot for

a given t. But since we can map any spatial snapshot to a vector f , the difference in this

regard (representation) is just scalar ↔ vector. Least you think (266) does not look like a

PDE, let us take time derivative on both sides:

df

dt
= g(t) (268)

and recall that at heart, a PDE is just

df

dt
= g(t) (269)

with complicated f and g, so the analogy becomes transparent. Thus, we should investigate

the global error of a PDE timestepper in almost the same way as we analyze the error of an

scalar integral, which is by a convergence procedure, with some extra language developed

for vector and matrix norms. As we will see, it will be a convergence procedure involving

matrices and matrix functions. [Note: even though one may first learn about matrix functions

in quantum mechanics, this turns out to be a good tool for understanding algorithms]

Consider the TDSE again with time-independent potential. In the absence of IEEE754 error,

the numerical solution is just explicitly

ψn = (PCN)nψ0 =

(
I − i∆tH/2

I + i∆tH/2

)n

ψ0 (270)
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Consider a convergence procedure where we fix t, and reduce ∆t, so

ψ(t; ∆t) =

(
I − i∆tH/2

I + i∆tH/2

)t/∆t

ψ0. (271)

We have previously seen that

I − i∆tH/2

I + i∆tH/2
≡ exp(−i∆tH) + r̃(∆tH) (272)

with the understanding that when ∆t→ 0:

r̃(∆tH) = O((∆tH)3). (273)

To be able to do the high power, it is better to factorize the error inside the exponential:

I − i∆tH/2

I + i∆tH/2
= exp(−i∆tH)[I + exp(i∆tH)r̃(∆tH)] ≡ exp(−i∆tH + r(∆tH)) (274)

with

r(∆tH) ≡ ln[I + exp(i∆tH)r̃(∆tH)] (275)

Simple Taylor expansion tells us that

r(∆tH) = O((∆tH)3) (276)

also, and that is all we need to know.

Then, we have

ψ(t; ∆t) = exp(−i∆tH + r(∆tH))t/∆tψ0

= exp(−itH + tr(∆tH)/∆t)ψ0

= exp(tr(∆tH)/∆t) exp(−itH)ψ0 (277)

It is important to pause here and consider the error we get in both spatial and temporal

discretizations.
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3.1 Temporal Discretization

Let us discuss the temporal discretization error first. Ideally, exp(tr(∆tH)/∆t) shouldn’t be

there, because exp(−itH) is the true propagator in the continuous time limit which we try

to emulate. So any valid time-integrator must guarantee

lim
∆t→0

exp(tr(∆tH)/∆t) → I (278)

This is satisfied by PFE, PBE and PCN. But obviously, PCN is somewhat superior in this

regard, since

exp(tr(∆tH)/∆t) = I + tr(∆tH)/∆t+ (tr(∆tH)/∆t)2/2 + ... ≡ I + R(t; ∆t). (279)

where the global propagator error matrix scales as

R(t; ∆t) ∝ (∆t)2 (280)

in the case of PCN, and as

R(t; ∆t) ∝ (∆t)1 (281)

in the case of PFE and PBE, which always one order less than the order of local truncation

error. This is the rule of error accumulation. Roughly speaking, if at each timestep we make

O((∆t)M) error, there are t/∆t steps, so the final error adds up (in the propagator matrix

part, these local truncation errors constructively add up - that is, they are of the same sign -

not random signs - and don’t cancel). So the global propagator error scales as O((∆t)M−1).

Note that the convergence condition (278) is true even for unstable integrators like PFE!

That is, for a fix t, as long as one takes fine enough time-steps, one will eventually get the

right solution!

But what if ∆t is not small enough? What can we say about possible error to our numerical

solution then? To do this we need some basic definition of the “distance” between two

solutions: one is what we actually get for finite ∆t, ψ(t; ∆t), and the other is what we can

expect to get (given the spatial discretization)

ψref(t) ≡ lim
∆t→0

ψ(t; ∆t) = exp(−itH)ψ0 (282)
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from (277). The two are off by the global propagator error

e(t) ≡ ψ(t; ∆t) −ψref(t) = R(t; ∆t)ψref(t) (283)

where R(t; ∆t) is the global propagator error matrix. e represents the eror in solution

snapshot. How do we evaluate its size?

3.1.1 Vectors, Matrices

Since the solutions must be represented by vectors (even an analytically exact solution still

needs to be sampled discretely to be compared), it is natural to define “distance” between

two numerical solutions as

d(u,v) ≡ ‖u − v‖ (284)

where ‖ · ‖ is so called Euclidean norm of a vector

‖e‖ ≡
√

|e0|2 + |e1|2 + ...+ |eJ−1|2. (285)

The Euclidean norm (L2 norm) is used most often, but occasionally people use the p-norm,

‖e‖p ≡ (|e0|p + |e1|p + ...+ |eJ−1|p)1/p. (286)

One can show that the triangular inequality

‖a‖p + ‖b‖p ≥ ‖a + b‖p, ∀a,b (287)

holds with p ≥ 1. When p = 1, we have so-called L1 norm, or “taxicab norm”, and

correspondingly “Manhattan distance”. With a larger p, we get more emphasis on the

largest-magnitude component of the vector.

Also, another very useful norm measure is similar to the Euclidean norm, but with a “metric”

matrix G, where G is a Hermitian, positive definite, matrix:

‖e‖G ≡ =
√

e†Ge. (288)

This comes in handy when the different grid-points of a spatial discretization scheme are

nonequivalent, for example when using a radial grid and comparing two radial functions f(r)

and g(r). The metric norm, which is a quadratic form, is equivalent to an Euclidean norm
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in a linear-transformed space, since we can always split

G = VΛV† = V
√

ΛV†V
√

ΛV† = B2 (289)

where B is a Hermitian matrix. So

‖e‖G =
√

e†B2e = ‖Be‖2, (290)

and if we just redefine ẽ ≡ Be, then G-norm is just Euclidean norm in the redefined linear

space.

Next I would like to discuss about the “size” of a general m× n matrix A. The most useful

way to think about such a matrix is that it specifies way for mapping a n-dim vector to a

m-dim vector:

xn×1 → bm×1 (291)

with the linear operation b = Ax, or

b = a1x1 + ...+ anxn (292)

where a1, a2, ... an are the different columns of A. In the context of error analysis, “size” of

a matrix is defined by what it can do as an operator. For example, in (283), we care about

the size of the global propagator error e(t), and would like to relate it somehow to the size of

ψref(t). A more nuanced view is that we would like to know what R(t; ∆t) (when ∆t is not

“small enough”) would do to a smooth input, versus to a white noise (composed of many

random “mini-shocks” of 10−16 magnitude but high frequency) input, recognizing the real

input is always the superposition of the two, due to IEEE754 error.

This naturally leads to the definition of the size of A as

‖A‖ ≡ max
x

‖Ax‖
‖x‖

(293)

for a given vector-norm definition, the “matrix norm” (size) is thus simultaneously defined.

For a finite m× n matrix, ‖A‖ is never infinite, and it also satisfies triangular inequality

‖A‖p + ‖B‖p ≥ ‖A + B‖p, ∀A,B. (294)
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If we have access to ‖A‖, we can bound

‖Ax‖ ≤ ‖A‖‖x‖ (295)

which is obviously a very reassuring inequality. We can also show that

‖AB‖p ≤ ‖A‖p‖B‖p (296)

since
‖ABx‖p

‖x‖p

=
‖ABx‖p

‖Bx‖p

· ‖Bx‖p

‖x‖p

≤ ‖A‖p‖B‖p. (297)

Let us take the Euclidean vector norm from now on (the G-norm is very similar). If A is a

Hermitian square matrix, it is easy to show that

‖Ax‖ = max
k

|λk| (298)

But generally we deal with non-Hermitian (for instance R(t; ∆t) in (283) is not Hermitian),

or even non-square, matrices Am×n. If m = n, one can always diagonalize a non-Hermitian

matrix

A = WΛW−1, (299)

where Λ is a diagonal matrix, but with possibly imaginary entries that come in pairs and

W−1 6= W†, if A 6= A†. However, in this case, the eigenvalues does not straightforwardly

tell us the Euclidean norm of A. We need something else.

3.1.2 Singular Value Decomposition (SVD)

While diagonalization is useful, it can only be done on square matrices. For general matrix

analysis there is another equally (and perhaps more) powerful procedure called singular value

decomposition (SVD), which is

Am×n = Um×mΣm×nV
†
n×n (300)

which gives three matrices U, Σ and V with better properties than W and Λ. These

properties are:

UU† = U†U = I, VV† = V†V = I, (301)
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and

Σij = σiδij (302)

with σi all real and non-negative. The convention is that σi’s are ranked in decreasing order,

σ1 ≥ σ2 ≥ ... ≥ σmin(m,n) ≥ 0 (303)

The best way to appreciate SVD is the to write U,V as

U ≡ (u1,u2, ...,um) , V ≡ (v1,v2, ...,vn) , (304)

with orthonormality in individual linear spaces

u†
iuj = δij, v†

ivj = δij, (305)

i.e., they form perfect basis in their individual input and output spaces, and then express

Am×n =

min(m,n)∑
k=1

σkukv
†
k, (306)

where ukv
†
k is called a dyad matrix (rank=1). In quantum mechanics parlance,

Â =

min(m,n)∑
k=1

σk|uk〉〈vk|. (307)

If one knows the SVD,

A = UΣV† (308)

then

AA† = UΣ2U†, A†A = VΣ2V†. (309)

The above actually indicates a method to do SVD numerically by diagonalization, and prove

SVD can always be done, since both AA† and A†A are Hermitian positive definite matrices.

The reason SVD is directly related to measuring the Euclidean size of a matrix is that one

way to think about the size is how much amplification in Euclidean norm it can give. That

is

a(x̂) ≡ ‖Ax‖
‖x‖

(310)
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It is easy to show that, using the orthonormality of U and V

a2(x̂) =

min(m,n)∑
k=1

σ2
k|v

†
kx̂|

2. (311)

so

a(x̂) =
√
σ2

1(v1, x̂)2 + σ2
2(v2, x̂)2 + ... (312)

where (, ) is the vector inner-product to make it more explicit. This amplification map forms

a hyper-ellipsoid in the input space, with principal axis along {vk}, and so we can upper-

and lower-bound a(x̂):

max a(x̂) = σ1 ≡ σmax(A), min a(x̂) =

{
0, n > m

σn, n ≤ m
≡ σmin(A) (313)

If a square matrix A is invertible, then it is easy to see that

A−1 = VΣ−1U† (314)

assuming all singular values are positive. Then by inspection

σmax(A
−1) =

1

σmin(A)
, σmin(A

−1) =
1

σmax(A)
. (315)

The ratio between maximum Euclidean norm amplification and minimum norm amplification

is called the condition number of the matrix A:

κ(A) ≡ σmax(A)

σmin(A)
≥ 1. (316)

The only class of matrices with condition number 1 are the unitary matrices, which performs

pure rotation but no stretching. Matrix with large condition number are also called ill-

conditioned.

To see where this name comes from, consider solution to a linear system of equations:

Ax = b (317)

using a perfect computer. Now suppose there is uncertainty or error in the input, b̃, what
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would be the resulting uncertainty or error in the solution, x̃,

A(x + x̃) = b + b̃ (318)

if we have a perfect computer. How may we bound x̃?

The general thoughts to quantify absolute error in a vector by one scalar is

R(x) ≡ ‖x̃‖, R(b) ≡ ‖b̃‖ (319)

r(x) ≡ ‖x̃‖
‖x‖

, r(b) ≡ ‖b̃‖
‖b‖

. (320)

We would like to bound the amplification of relative error from input to output:

r(x)

r(b)
=

‖x̃‖
‖b̃‖

· ‖b‖
‖x‖

. (321)

But since

Ax = b (322)

we have
‖b‖
‖x‖

≤ σmax(A), (323)

and since

Ax̃ = b̃ → x̃ = A−1b̃, (324)

we have
‖x̃‖
‖b̃‖

≤ σmax(A
−1). (325)

Since the uncertainty (jittering), b̃, maybe uncorrelated with b or x, both maxima may be

achieved simultaneously. So the worst relative uncertainty propagation is given by

r(x)

r(b)
=

‖x̃‖
‖b̃‖

· ‖b‖
‖x‖

≤ σmax(A
−1) · σmax(A) =

σmax(A)

σmin(A)
= κ(A). (326)

What the above derivation means is that ill-conditioning have nothing to do with the mag-

nitude of the matrix entries, but the relative ratio of its singular values. Remember that

the relative error in IEEE754 representation also almost magnitude-independent to within

a factor of 2, as long as we do not overflow or underflow: 2−1022 ≤ |x| ≤ 21023(2 − 2−52), so
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there is really no reason to believe just because the numbers cranking through the computer

is 1052 or 10−52 in absolute magnitude, that a large relative error would occur (although this

may indicate error or carelessness in model or non-dimensionalization).

The significance of above is that with implicit algorithms that requires solving linear systems

of equations at each time step, the relative uncertainty can get amplified from input to

output, that is maximally bounded by the condition number of the linear mapping. Thus, if

the input has M effective digits, one could lose up to K = log10(κ(B)) effect digits, where B

denotes the linear mapping. Fortunately, assuming a perfect computer, the Crank-Nicolson

mapping is unitary for TDSE. In other words, PCN always performs pure rotation (in the

discretized Hilbert space), and thus should introduce no additional loss of digits in the

uncertainty.

3.1.3 Maximum temporal error

So, in (277), if

ψref(t; ∆t) ≡ exp(−itH)ψ0 (327)

is regarded as the true solution, then the maximum error we get is

‖ψref(t; ∆t) −ψref(t)‖ ≤ ‖ψref(t)‖‖R(t; ∆t)‖ (328)

or the maximum relative error

‖ψref(t; ∆t) −ψref(t)‖
‖ψref(t)‖

≤ σmax(R(t; ∆t)) (329)

if we use Euclidean norm to measure error, with

R(t; ∆t) ≡ exp(tr(∆tH)/∆t) − I. (330)

The above is formally rigorous result for perfect computer (no IEEE754 error). For Hermitian

H, we get explicit result:

σmax(R(t; ∆t)) = max
k

| exp(tr(∆tλk)/∆t) − 1| (331)

if we diagonalize H.
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In the limit of small ∆t,

σmax(R(t; ∆t)) ∝ (∆t)m−1. (332)

if the local truncation error of the algorithm scales as (∆t)m.

In reality, there is IEEE754 error, and even though they are really small, eventually they will

come into play for large enough number of timesteps. How to model error generation and

error propagation due to IEEE754? A simple “model” of what can happen in the computer

is that:

ψn+1 ≡ PCNψ
n + sn (333)

where ψn+1, ψn are what’s actually get stored in the computer memory, but PCN is the

mathematical ideal of what it should be (since we use PCN just to denote a procedure). sn is

obviously implementation (machine, as well as source code and compiler which give sequence

of binary instructions) dependent, but we may make the following reasonable assumptions:

• Error injected has zero mean

〈sn〉 = 0 (334)

since one equally likely rounds up as rounding down in +,-,*,/ floating point operations.

• Error made is proportional to machine precision

‖sn‖ ∝ eps (335)

• Errors at different steps are largely uncorrelated:

Cov(sn, sm6=n) = 0 (336)

in other words, the IEEE754 error behaving almost like a pseudo random number.

• While the signs are uncorrelated with the input, the magnitude of error on each entry

is roughly proportional to adjacent entries, with similar connectivity topology as PCN

itself.

For this reason, one could reasonably model

ψn+1 = (PCN + Sn)ψn (337)
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where Sn is a random matrix, not totally precisly specified here, but with similar structure

as PCN. In other words, if a particular matrix entry of PCN is zero or really really small, the

“corresponding entry” of Sn should be zero or really really small as well. And thus

〈Sn〉 = 0, ‖Sn‖ ∝ eps, Cov(Sn,Sm6=n) = 0 (338)

then using the operator language, we would say

ψn = (PCN + Sn−1)(PCN + Sn−2)...(PCN + S0)ψ0. (339)

The above equation should be in the classic form, that is, it “happens” in the mind, not

in the computer. Expanding out all the terms, we see that the leading-order global error

caused by IEEE754 error injection is

d ≡ (Pn−1
CN S0 + Pn−2

CN S1PCN + ...+ Sn−1Pn−1
CN )ψ0 ≡ Dψ0 (340)

where we have thrown out all the eps2 and above terms. We also note there should be

a lot of destructive interference (error calculation) in D due to roundoff error, unlike the

global propagator error (330) due to algorithm whose error (expressed in a matrix function)

constructively accumulates, eventually causing the downfall of unstable algorithms. So we

can say

〈d〉 = 0, 〈‖d‖2〉 = ψ0†
(
〈S0†P†n−1

CN Pn−1
CN S0〉 + ...+ P†n−1

CN 〈S†n−1Sn−1〉Pn−1
CN

)
ψ0 (341)

We could have used the P†
CNPCN = I to cancel some terms, but I preserve the form above in

case a non-unitary algorithm like PBE is used. (340) has a simple interpretation of simply

adding the error injected at different timesteps and then evolving them for the remaining

number of timesteps.

It is easy to show that

〈‖d‖2〉
‖ψ0‖2

≤ ‖
(
〈S0†P†n−1

CN Pn−1
CN S0〉 + ...+ P†n−1

CN 〈S†n−1Sn−1〉Pn−1
CN

)
‖2 (342)

Then, if we further use the unitary property and (296), we can get a very simple result:

〈‖d‖2〉
‖ψ0‖2

≤ ‖S0‖2 + ‖S1‖2 + ...+ ‖Sn−1‖2 (343)
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or

〈‖d‖2〉 ∼ n‖S0‖2 (344)

which is a simple
√
n error.

Based on above, we can think about a strategy to obtain the most accurate result for a given

implementation. The algorithm error (global truncation error) and the global roundoff error

are uncorrelated, so when ∆t is small, the total expected error squared is

〈‖d‖2〉 + 〈‖e‖2〉 = a · eps2 ·N + b ·N−2m+2 (345)

which is minimized at

a · eps2 − b(2m− 2)N−2m+1
best = 0 (346)

or

Nbest ∝ eps
2

1−2m (347)

On a real computer with a real program, for a fixed t, if we increase the number of timesteps

N above Nbest, the anarchy of numerical noise will take over, and it becomes fruitless to add

more time steps, since the error would actually start to increase.

Who cares about d and e, the temporal errors, which may be regarded as containing phase

information? Well, the astronomers and NASA care. If you want to know whether or

not asteroid XYZ will eventually hit Earth, after circling the solar system 874 times in

16093.0754981 years from today and having a few close calls with Jupiter and Mars and

Moon along the trip, you need a very accurate time integrator algorithm and a small d

and e. We see in above that respecting symmetries and conservation laws give us great

advantages, not least in simplifying the analysis. Such integrators (in ODE and PDE) that

respect numerical energy conservation have a special name, called symplectic integrators.

For many other kinds of simulations, exact phase matching may not be as critical as one

initially thinks. In molecular dynamics (MD) simulations, where one integrates Newton’s

equations of motion [69, 70], a set of second-order nonlinear ODEs, if only the thermody-

namic quantities (density, heat capacity, elastic constants) are of interest, then global phase

information is not important, since time does not enter into the partition function. However,

if transport properties are of interest, for example thermal conductivity [26], then the phase

accuracy of time integrator does become important.
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3.2 Spatial Discretization

So far we have regarded (282) as the “reference”. But on a second thought, there must

be some problem with ψref(t) also. One cannot represent continuous space by a discrete

spatial sample without some loss. In signal processing, this problem is called “aliasing”,

which means two different continuous functions may look indistinguishable (one is alias of

the another) after discrete sampling.

Let us fall back to V (x) = 0, and take periodic boundary condition (PBC) x = [0, 2π).

Suppose the initial wavefunction happens to be

ψ(x, t = 0) = exp(ikx), k = 0,±1,±2, .... (348)

So the lowest mode is a constant, the first excitations are eix, e−ix, the 2nd excitations are

ei2x, e−i2x, etc. Say we have decided to adapt a regular J-grid:

xj =
2π

J
j, j = 0..J − 1 (349)

to represent such wavefunctions that respect the PBC. We have the mapping notation:

ψ(x, t = 0) = ψk(x) ↔ ψ0 = ψk (350)

where we use the subscript k to label the continuum/discrete modes.

Consider what the numerical representation of this initial wavefunction sees:

(ψ0)j = (ψk)j = exp(ikxj) = exp

(
i2πkj

J

)
(351)

But, this would mean ψ(x, t = 0) = exp(ix) would be represented by exactly the same

ψ0 vector as ψ(x, t = 0) = exp(i(1 + MJ)x), where M is an integer! This means the

k-continuum-mode is aliased by k+MJ-continuum-mode, once spatial discretization is per-

formed.

The true energy dispersion for

i∂tψ = Hψ = (−∇2 + V (x))ψ (352)
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may be

εk =

(
2πk

J∆x

)2

(353)

for V (x) = 0. So in quantum mechanics, the true propagator is

e−itHψk(x) = e−it( 2πk
J∆x)

2

ψk(x) (354)

So in above, the k+MJ-mode clearly evolves much more rapidly in phase than the k-mode.

But for the discrete representation, we will have from (224):

εk =
4 sin2(kπ/J)

(∆x)2
(355)

so

ψref(t) ≡ exp(−itH)ψ0 = e
−it

4 sin2(kπ/J)

(∆x)2 ψ0 (356)

Note that the above is independent of whether PCN, PBE or PFE time integrator is used,

since we have taken those methods to time convergence already.

We make the following comments:

1. Even though ψref(t) is already the ∆t → 0 limit for time-stepping algorithm, there

is always error in the phase evolution. This phase factor error is due to the spatial

discretization approximation, essentially in the H ↔ H mapping. For k � J , the

phase error is “small” for finite t, but this phase difference would still diverge at large

enough t. This is not a problem for ODE, but a problem for PDE, since PDE fields

have infinite degrees of freedom.

2. The numerical energy dispersion is J-periodic, so there is k-mode / k + MJ-mode

indistinguishability. Because of this, we must map the infinite k-modes in continuum

to a first-Brillouin zone (BZ) of k ∈ [−J/2, J/2), and this mapping is many-to-one. All

this means is that the “expression power” of a J-grid representation is finite, unlike

the infinite “expression power” of true continuum fields. True continuum field, with

its infinite expressivity, can’t however in general be stored in a real computer.

Based on the above, we may have the following understanding of what our algorithm is

doing. Suppose the “characteristic” wavevector of the physics of our interest is kc. That is
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to say, if we Fourier transform our initial wavefunction ψ(x, t = 0):

ψ(x, t = 0) =
∞∑

k=−∞

fke
ikx (357)

the power spectrum |fk|2 is “exponentially small” for k > kc. Then the ideally time-converged

reference solution ψref(t) can be reasonably close to the true solution ψ(x, t), if

1 � t(εkc − εkc) = t

[(
2πkc

J∆x

)2

− 4 sin2(kcπ/J)

(∆x)2

]
= t

(
2πkc

J∆x

)2

(1− sinc2(πkc/J)). (358)

where

sinc(x) ≡ sin(x)

x
= 1 − x2

6
+

x4

120
+ ... (359)

(BTW sinc2 is what we get when doing single-slit quantum diffraction). So when πkc/J � 1,

we can simplify the requirement to

1 � t

(
2πkc

J∆x

)2
π2k2

c/J
2

3
. (360)

The above in fact predicts the asymptotic behavior for numerical spatial convergence: it

says that the numerical phase error due to spatial discretization (in the limit of perfect time

convergence) would scale as J−4. So with doubling of spatial grid (say from 10km grid

to 5km grid), we can extend the time horizon of accurate phase prediction (think weather

forecast) 16 times. The flip side of this is that if k2
c (kinetic energy) of the physics of interest

doubles, or the wavelength of interest shrinks by 1.4142, the time horizon of accurate phase

prediction would shrink by a factor of 4, even with perfect numerical time convergence.

4 Diffusion Equation Solver

The diffusion equation looks like

∂tρ = ∇ · (D∇ρ) (361)

D is generally a function of ρ:

D(x, t) = D(ρ(x, t)) (362)
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Let us use

D′ ≡ dD

dρ
(363)

to denote this dependence, we then get

∂tρ = D∇2ρ+D′(∇ρ) · (∇ρ) = D∇2ρ+D′|∇ρ|2. (364)

The D′ term above makes the diffusion equation generally nonlinear.

For analyzing algorithms, we usually pay attention to the highest-order linear derivative,

rather than the lower-order nonlinear terms. So let us first pretend the D′ term does not

exist, and focus on numerical solvers for

∂tρ = ∇2ρ (365)

where we have absorbed the constant D into reduced time

Dt → t. (366)

As we have seen in the analyses for TDSE, even through a continuum equation ∂tρ = ∇2ρ can

look really simple, truly understanding what a spatially and temporally discretized numerical

algorithm is doing in attempting to solve it is far from trivial, if we start from scratch.

But once we get the operator/matrix language, this numerical analysis is more or less stan-

dard, with the following important caveats. First, while (365) conserves mass
∫
dxρ (TDSE

conserves
∫
dx|ρ|2), it does not conserve energy

d

(∫
dxρ2/2

)
/dt = −

∫
dx|∇ρ|2 (367)

so the diffusion equation is naturally dissipative, unlike hyperbolic PDE where one sometimes

adds artificial, or numerical, dissipation (see section 2.3). Thus, unlike TDSE which is

hyperbolic, (365) is classified as a parabolic equation, if D > 0.

Some textbooks regard (365) as solving TDSE in imaginary time t → it, and imply that

TDSE and diffusion equation are the same kind of equations. In some sense this is true, just

like the planewave eikx and the spatially decaying function e−λx are really just special limits

of the general function eZ where Z is a general complex number. However, recall that energy

conservation requires unitarity of the numerical evolution matrix. After t→ it, we no longer
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have unitarity for the diffusional time evolution operator - and we shouldn’t have, since the

analytical behavior of diffusion equation is dissipative. Also note that even the functional

form of the conserved “mass” is different, so TDSE and diffusion equations are indeed very

different beasts.

With the above philosophical dispensation, the rest is straightforward. The real time evolu-

tion operator is

ρ(x, t) = et∇2

ρ0(x) (368)

After spatial discretization, we have

ρ(x, t) ↔ ρ(t), ∇2 ↔ L, et∇2 ↔ etL (369)

where we may again take certain 1D (200) or 2D (201) form of L and then stick with it

throughout the “computer game”.

In our high-level notation of algorithms, the temporal discretization is just to approximate

P(∆t) ≡ e∆tL (370)

which is a dense J × J matrix, by a sparse marix approximation. If we again take the

Crank-Nicolson polynomial-fraction approximant

P(∆t) = PCN +O((∆t)3) (371)

where

PCN ≡ I + ∆tL/2

I − ∆tL/2
, (372)

we will inherit many formal structures (but not necessarily detailed properties) we have

proved for Crank-Nicolson TDSE algorithm, including local truncation error, global trunca-

tion error, etc., except losing unitarity.

Regarding stability, because the numerical eigenvalues of L (in the central difference form

(200)) is non-positive

− εk = −4 sin2(kπ/J)

(∆x)2
(373)
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the numerical eigenvalues of Crank-Nicolson propagator

λk =
1 − ∆tεk/2

1 + ∆tεk/2
(374)

are all real and bounded:

0 ≤ λk ≤ 1, (375)

for arbitrarily large ∆t. So the algorithm is unconditionally stable as well.

As an aside, L being negative definite operator is a direct mirror of similar property in the

continuous domain ∫
dxf(x)∇2f(x) ≤ 0 (376)

with PBC. Imagine a sinusoidal function - when the curvature is positive, the value is low; but

when the curvature is negative, the value is high. So the integral over a PBC domain averages

to a negative. While L captures this negativity of ∇2 all right, unfortunately the numerical

eigenvalues of L attempt to mimick but does not fully capture the true eigenspectrum of ∇2.

This is an “original sin” of a finite-difference PDE solver attributed to spatial discretization.

The conservation properties of diffusion equation are analytically distinct from TDSEs. Using

the matrix language, we can easily prove numerical mass conservation here, since we can write

Nn
1 ≡ 1

∆x
(a, (

I + ∆tL/2

I − ∆tL/2
)nρ0) (377)

where a is a constant vector with all entries taking value 1, and we use the (a,b) notation

to denote inner product. However, because the propagator is now Hermitian (in TDSE the

propagator was unitary but not Hermitian), we have

Nn
1 =

1

∆x
((

I + ∆tL/2

I − ∆tL/2
)na, ρ0) =

1

∆x
(a, ρ0) = N0

1 . (378)

So we see mass conservation is related to the Hermitian symmetry here.

We can also prove that

Nn
2 =

1

2∆x
((

I + ∆tL/2

I − ∆tL/2
)nρ0, (

I + ∆tL/2

I − ∆tL/2
)nρ0) =

1

2∆x
(ρ0, (

I + ∆tL/2

I − ∆tL/2
)2nρ0) ≤ 1

2∆x
(ρ0,ρ0)

(379)

as the Hermitian matrix has all-real eigevalues bounded ∈ (0, 1].

82



In the TDSE section we focused on the high-level structures of a time-stepping algorithm.

Let us use the diffusion equation here to illustrate some more implementation details.

4.1 Nonlinear Form

Now coming back to the full nonlinear problem (364), which we have avoided so far. The

first step is always spatial discretization, and we need to have some representation for vector

gradient ∇ρ, not just contracted Laplacian ∇2. This can be done in the straightforward

manner, like the central difference (199). So given a ρ(t) vector (the field snapshot), we can

evaluate the right-hand side (RHS) of (364):

L[ρ] ≡ D∇2ρ+D′|∇ρ|2 ↔ L(ρ(t)) (380)

in some manner, where L(·) is a finite-vector-to-finite-vector mapping function that is not

necessarily linear now. Or we may directly discretize

L[ρ] ≡ ∇ · (D∇ρ) ↔ L(ρ(t)) (381)

in some way - this is an important detail, but it does not matter much for the framework

now. We just note that in the limit of D′ → 0, the mapping approaches the linear mapping

L(ρ) → Lρ.

We note that in the linear case, the time-stepping scheme

ρn+1 =
I + ∆tL/2

I − ∆tL/2
ρn, (382)

is just equivalent to

(I − ∆tL/2)ρn+1 = (I + ∆tL/2)ρn, (383)

and indeed the above form is how we solve for the unknown ρn+1. To generalize the Crank-

Nicolson time stepper to a nonlinear situation, all we need to do is to replace Lρ by L(ρ):

ρn+1 − ∆tL(ρn+1)/2 = ρn + ∆tL(ρn)/2 (384)

which may also be regarded as

ρn+1 − ρn

∆t
=

L(ρn+1) + L(ρn)

2
(385)
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with the intuitive interpretation of 50%-50% mixture of RHS of (364) using the present and

future field snapshots when timestepping from the present to the future.

To solve a nonlinear system of equations like (384), one needs the Newton-Raphson method,

which in scalar form looks like

xnew = xold −
f(xold)

f ′(xold)
(386)

if one wants to find the roots of a nonlinear equation f(x) = 0. This is standard topic in

basic numerical algorithms. When solution is converging, it is converging very rapidly, since

one can show

|xnew − xroot| ∝ |xold − xroot|2 ∝ |xinitial − xroot|2
l

(387)

so |x−xroot| is decreasing exponentially with the number of iterations n (unlike the power-law

convergence we have seen so far with time-stepping algorithms). For details see Appendix

B.

Here for the vectorial version, one essentially linearizes the LHS of (384) first, by taking

the Jacobian of the post-spatial-discretization form (in other words, a concrete expression

or procedure):

J ≡ ∂L(ρ)

∂ρ
, Jij ≡ ∂(L(ρ))i

∂(ρ)j

(388)

so

dL(ρ) = Jdρ. (389)

From a guess solution to (384), ρg, one pretends that the difference between the true solution

ρ and the guess solution is small

ρ = ρg + ∆ρ, (390)

so one could approximate

ρ− ∆tL(ρ)/2 = (ρg − ∆tL(ρg)/2) + (I − ∆tJ(ρg)/2)∆ρ+ O(∆ρ2) (391)

and reordering the terms in (384), one obtains:

(I − ∆tJ(ρg)/2)∆ρ+ O(∆ρ2) = ρn + ∆tL(ρn)/2 − (ρg − ∆tL(ρg)/2). (392)

The right-hand side of above is called the residual vector, which can be evaluated given ρn

and any guess ρg, which we can take to be ρg = ρn for the first try if we don’t have other
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good guesses. If the residual is zero, we can immediately stop because we have found the

solution ρn+1 = ρg. But if the residual is not zero and not small enough, the approximate

solution to (392) to leading order can be found by solving a linear system of equations:

(I − ∆tJ(ρg)/2)∆ρ = ρn + ∆tL(ρn)/2 − (ρg − ∆tL(ρg)/2) (393)

which is a Ax = b problem. One can then update the guess solution

ρg → ρg + ∆ρ (394)

followed by re-evaluation of the RHS of (392) using the new ρg, as well as re-evaluation of

the Jacobian on LHS of (393), so (393) solution and (394) update can be repeated again and

again. The gist here is that a nonlinear system of equations can be solved by repeatedly

solving a linear system of equations.

A detail in the method outlined above is that when solving (393), we do not have to explicitly

derive and store J(ρg), even though Jij’s are defined by (388). For Krylov subspace methods

(CG [71, 72], BiCGSTAB [73], MINRES [74] / LSQR [75], GMRES [76], QMR [77, 78], etc.)

that solve a linear system of equations like (393), all one needs are J(ρg)a matrix-vector

products for arbitrary input vector a’s, which one can obtain by

J(ρg)a =
L(ρg + ηa/2) − L(ρg − ηa/2)

η
+ O(η2) (395)

which can often provide sufficient accuracy for appropriately small η. This is particularly

handy when the L(·) function is in a complicated form, that evaluating L(·) on a 3D mesh can

be coded up relatively straightforwardly, but taking its Jacobian analytically and organizing

them can be a bookkeeping headache.

The appropriately small η (395) expression may be found by the following consideration. If

we have an infinitely accurate computer, then obviously the smaller the η we take in (395),

the better. But we don’t have an infinitely accurate computer. Suppose ρg and a have

similar order of magnitude, then we know that the first plus in ρg + ηa/2 would already

incur an IEEE754 roundoff error ∝ (±eps)a if η > eps, and so would the minus operation

in ρg − ηa/2, with equal possibility rounding up or down. So one potentially is facing error

∝ eps/η in (395) due to roundoff error. But there is also order truncation error due to finite
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difference, so the total expected error is

a
eps

η
+ bη2 (396)

which is minimized when one takes

η ∝ eps1/3, (397)

and the relative error in taking this error-optimized numerical differentiation should scale as

eps2/3. Having about 10 effective digits should be sufficient for most time-stepping needs, at

least initially for testing the code structure. Later, if 5 more digits are needed, one can code

up the sparse analytical Jacobian as plug-in replacement.

The nonlinear form of the Crank-Nicolson time stepper (384) is a good starting point to

discuss its analytical properties. The first remark is that suppose both ρn+1 and ρn are

“close” to some ρg (in other words ρn+1 and ρn must be close to each other):

ρn+1 ≡ ρg + ρ̃n+1, ρn ≡ ρg + ρ̃n (398)

then to leading order, (384) can be Taylor expanded to give:

ρ̃n+1 − ∆tJ(ρg)ρ̃
n+1/2 = ρ̃n + ∆tJ(ρg)ρ̃

n/2. (399)

In other words, for a short while the changes {ρ̃n} can be regarded as simply following linear

Crank-Nicolson time stepping with the previous L-matrix replaced by the J-matrix, with an

eigenspectrum of

J = UΛU−1,

(
I + ∆tJ/2

I − ∆tJ/2

)n′

= U

(
I + ∆tΛ/2

I − ∆tΛ/2

)n′

U−1. (400)

This can go on a for a few timesteps, and then J is updated. Therefore locally the nonlinear

form would inherit the good behavior of the linear Crank-Nicolson, provided two conditions

are satisfied:

• The eigenvalues λk = (Λ)kk of J should have non-positive real parts, so

∣∣∣∣1 + ∆tλk/2

1 − ∆tλk/2

∣∣∣∣ =

√
(1 + ∆tReλk/2)2 + (∆tImλk/2)2

(1 − ∆tReλk/2)2 + (∆tImλk/2)2
(401)
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which is related to the dissipative nature of the nonlinear PDE:∫
dxρ∇ · (D∇ρ) ≡

∫
dxρL[ρ] ≤ 0, (402)

when D ≥ 0, in particular meaningless perturbations like the +1,-1,+1,-1 mode should

be suppressed by a negative Reλk. We see in above that the essential advantage of

the Crank-Nicolson fraction form, that is the irrelevance of the sign and magnitude of

Imλk (as in pure TDSE), and the irrelevance of the magnitude of Reλk and ∆t (as in

linear diffusion equation) as long as its sign is negative, is naturally preserved for a

mixed real and imaginary part system. In some sense, this is best stability behavior

one can expect from an algorithm, since we know that if one flips the sign of D and

thus Reλk, we know that the solution analytically should develop sharp features.

It would also be nice if J is Hermitian to have the same symmetry properties as L:

J† = J (403)

which is related to the detailed form of the spatial discretization L(ρ). But this turns

out to be not easy to achieve for (380) or (381). Maybe my 22.107 students can help

me out here, as I am now depleted of brain cells.

• To make sure ρn+1 and ρn are sufficiently close so the expansion has validity, we need

to have a small enough ∆t, and also avoid shockwave situations where the changes

could be very rapid. For a dissipative equation like the diffusion equation this usually

can be met after a while.

4.2 Boundary conditions

We have used periodic boundary conditions (PBC) so far to avoid dealing with the issue of

BC. Generally for PDEs there are several other kinds of BC:

• Dirichlet boundary condition:

ρ(xb, t) = g(xb, t), ∀xb ∈ ∂Ω (404)

where Ω ⊂ Rd is the domain where the PDE is valid, and Ω is fixed. ∂Ω is used to

represent its boundary. The relation to partial derivative symbol ∂ may be understood
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in the sense that in case Ω changes, the change in the point set will occur on the

boundary of Ω.

• Neumann boundary condition:

n · ∇ρ = g(xb, t), ∀xb ∈ ∂Ω (405)

where n is the normal vector on the surface. Note that n = n(xb), ∇ρ = ∇ρ(xb).

People also use the notations ∂nρ,
∂ρ
∂n

to abbreviate n · ∇ρ.

The reason only the perpendicular component of ∇ρ is specified in Neumann BC is that

if the parallel component of ∇ρ were specified, by integrating the parallel component

along the perimeter it amounts to Dirichlet BC.

• Robin (third type) boundary condition:

aρ+ b∂nρ = g, ∀xb ∈ ∂Ω (406)

which is a linear combination of Dirichlet and Neumann.

• Mixed boundary condition:

ρ = f, ∀xb ∈ ∂1Ω, (407)

∂nρ = g, ∀xb ∈ ∂2Ω (408)

• Stefan boundary condition: ∂Ω is changing with time, for example in a two-phase

flow. When we solve for the velocity field v(x, t) of water RVE (representative volume

element) inside a water droplet in oil, we need to be reminded that the water droplet

itself is changing shape.

Let us start with Dirichlet BC in 1D. Suppose we are given

ρ(xL, t) = ρL(t), ρ(xR, t) = ρR(t) (409)

Let us take a grid

∆x ≡ xR − xL

J
, xj ≡ xL + j∆x, ∀j = 0..J (410)
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The unknown variables to be solved in this case are obviously ρn
1 , ..., ρ

n
J−1 for n = 1, 2, ....

We would be given

ρn
0 = ρL(tn), ρn

J = ρR(tn), tn = t0 + n∆t, ∀n = 1, 2, ... (411)

so even though they are written in the same way as ρn
1 , ..., ρ

n
J−1, they are not true variables

of the problem. (The first step in any numerical problem is to identify the variables).

The PDE (365) should work in any internal points of the domain, which are the x1, ..., xJ−1

here. So the spatially-discretized form of (365) looks like

∂tρ = L̃ρ̃ (412)

where

ρ ≡

 ρ1

...

ρJ−1

 , ρ̃ ≡


ρ0

ρ1

...

ρJ−1

ρJ

 , (413)

where the vector ρ̃ contains 2 known entries and J − 1 unknown variables, and the L̃ matrix

here is (J − 1)× (J +1) if we take (200) for the Laplacian, unlike the J × J matrix when we

have PBC. But this turns out to be a minor issue - an algorithm that is well behaved under

PBC tends to be well-behaved under other boundary conditions.

In component form we have

∂tρj(t) =
ρj−1(t) − 2ρj(t) + ρj+1(t)

(∆x)2
, j = 1..J − 1 (414)

with ρ0 and ρJ known, we have the same number of equations as unknown. We can also

change to

∂tρ = Lρ+ (L̃)0ρ0(t) + (L̃)JρJ(t) = Lρ+ f(t) (415)
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where (L̃)0 and (L̃)J are the 0th and Jth column of the (J−1)×(J+1)-dimensional matrix,

and f(t) is a known forcing on the problem:

f(t) =
1

(∆x)2


ρ0(t)

0
...

0

ρJ(t)


(J−1)×1

. (416)

The analytical solution to the linear system with forcing, (415), is the Green’s function

expression:

ρ(t) = etLρ(0) +

∫ t

0

dτe(t−τ)Lf(τ). (417)

We see that the key element in (417) is still the propagator etL in various forms. Because

all the boundary condition can do is to use the propagator to propagate f(τ), the forcing, as

long as the numerical implementation of the propagator is stable, we will still have a stable

algorithm.

Granted, the L for Dirichlet BC is not exactly the same L for PBC, missing the L0J = LJ0

entries, so the eigenmodes are standing waves instead of travelling waves. But the gross

features of the eigenspectrum (for example, if we plot the distribution of eigenvalues):

mesh=1024; e=ones(mesh,1);

L=spdiags([e -2*e e], -1:1, mesh, mesh);

LPBC=L; LPBC(mesh,1)=1; LPBC(1,mesh)=1;

LPBC=LPBC*mesh^2; L=L*mesh^2;

hist(eig(LPBC),100);

hist(eig(L),100);

should be largely preserved. This is the same as if one takes a large chunk of crystal with

surfaces, the physical properties of this real crystal can be predicted based on PBC unit cell

calculations.

The other kinds of boundary conditions can be treated in essentially the same manner.

Basically, after the discretization

∂nρ ↔ Nρ (418)
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where N is a J ′ × J matrix, where J ′ is the number of boundary points (they could belong

to the J-set, for instance in the Neumann BC for a rectangular domain). Essentially all

boundary conditions are then reduced to linear constraints on the ρ vector. The language of

linear algebra is mainstay because all (404), (405), (406), (407), (408) are linear in ρ. Even

if we encounter some uncommon boundary condition that is nonlinear in ρ:

B(ρ) = 0 (419)

our previous experience with Newton-Raphson method tells us that it can be thought as

an iteration of linear constraints. The gist is that when combined with the equations or

constraints on the internal spatial points

I(ρ) = 0 (420)

that arises from the PDE, the joint equations

B(ρ) = 0, I(ρ) = 0 (421)

has the same number of unknowns as equations (full ranked in the case of linear system),

that would allow the ρ to be uniquely determined at each timestep. An ill-posed PDE + BC

would either be “rank deficient” after discretization, which means we can not find a solution

to simultaneously satisfy B(ρ) = 0 and I(ρ) = 0, or “indeterminate”, which means multiple

solutions can satisfy B(ρ) = 0 and I(ρ) = 0.

A fundamental belief of numerical analyst is that if a PDE+BC is analytically well posed,

then there should exist discretization and algorithms to solve it. An ill-posed PDE may be

due to insufficient physics or incorrect physics.

Now is a good occasion to introduce some more notations regarding matrices: a m×n matrix

A can either be regarded as n column vectors:

A = (a1, a2, ...an), (422)
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which when right-multiplying a vector, is best regarded as

A


x1

x2

...

xn

 = (a1, a2, ...an)


x1

x2

...

xn

 = a1x1 + a2x2 + ...+ anxn (423)

i.e. linear combination of its column vectors. Or, it can be regarded as m row-vectors:

A =


ã1

ã2

...

ãm

 (424)

which when left-multiplying a row vector, is best regarded as

[y1, y2, . . . , ym]A = [y1, y2, . . . , ym]


ã1

ã2

...

ãm

 = y1ã1 + y2ã2 + ...+ ymãm (425)

i.e. linear combination of its row vectors.

A subspace S ⊆ Rm is a set of vectors that

• If a ∈ S and b ∈ S, then λ1a + λ2b ∈ S

• Contains the zero vector 0

S⊥, the orthogonal complement of S, is the set of all vectors with

S⊥ = {a ∈ Rm : (a,b) = 0,∀b ∈ S} (426)

It is easy to show that S⊥ also forms a subspace, with

S⊥ ∩ S = 0, (427)

just like the x- and y-axes intersect at the point of origin and the point of origin only.
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Now let us define subspace projection operator:

P̂Sx =
∑

k

bk(bk,x) =
∑

k

bk(b
†
kx) (428)

it should be clear that

x = P̂Sx + P̂S⊥x (429)

with the two decomposition products perpendicular to each other.

Given any arbitrary set of column vectors {v1,v2, . . . ,vn}, we denote their span to be the

subspace of column vectors S ⊆ Rm that can be made out of any linear combination of them:

span(v1,v2, . . . ,vn) = {v1λ1 + v2λ2 + . . .+ vnλn|λ1, λ2, ...λn ∈ (−∞,∞)} (430)

We note that the above subspace would certainly be smaller than Rm if n < m. But even if

n ≥ m, it may still be smaller because there could be redundant vector(s) in {v1,v2, . . . ,vn}.

An independent basis set (b1, ...bn′) (may be incomplete) has the following definintion:

b1λ1 + b2λ2 + ...+ bn′λn′ = 0 (431)

if and only if λ1 = λ2 = ... = λn′ = 0.

We then define the dimension of a subspace dim(S ⊆ Rm) by the minimum size (number of

basis vectors) one needs to fully represent the subspace, i.e.,

∀v ∈ S, ∃y such that v = (b1, ...,bn′)y. (432)

We clearly have

dim(S) + dim(S⊥) = m. (433)

The above is for column-vector space. For a set of row vectors {w1,w2, . . . ,wm}, we can

define the same thing:

span(w1,w2, . . . ,wm) = {λ1w1 + λ2w2 + . . .+ λmwm|λ1, λ2, ...λm ∈ (−∞,∞)} (434)

We note that (430) and (434) generally live in different vector spaces: one is m-dimensional

column vector space, the other is n-dimensional row vector space.
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Writing out the separate vectors all the time is time-consuming, so we can use the matrix

notation before to group the vectors:

ColSpan(A) = {Ax | ∀x} (435)

and

RowSpan(A) = {yA | ∀y} (436)

A basic theorem is that

dim(ColSpan(A)) = dim(RowSpan(A)) (437)

even though ColSpan(A) and RowSpan(A) live in different spaces, their scalar dimen-

sionality is the same. The proof of this is that suppose dim(ColSpan(A)) ≡ m′ < n′ ≡
dim(RowSpan(A)), then we can express

(a1, a2, ...an) = (b1, ...bm′)Cm′×n (438)
ã1

ã2

...

ãm

 = Dm×n′

 b̃1

...

b̃n′

 (439)

But because they denote the same matrix

A = (b1, ...bm′)Cm′×n = Dm×n′

 b̃1

...

b̃n′

 (440)

We note that now Cm′×n has the same width but is shorter than B̃. This is untenable, since

RowSpan(A) = span(b̃1, . . . , b̃n′) (441)

with everything found on the left set can be found in the right set, and vice versa (no

redundancy in the minimal basis). But the LHS of (440) shows that one can have a lower-

dimensional basis for yA, using the (fewer) row vectors of Cm′×n. This violates the definition

that (b̃1, . . . , b̃n′) forms the minimal basis for yA. By the same token, but now looking at

basis for column space in (440), we cannot have m′ > n′ (Dm×n′ will be “thin”), so the only
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possibility is m′ = n′. The dimensionality of the row space is called the row rank of a matrix.

The dimensionality of the column space is called the column rank of a matrix. So what we

have proven is that the row rank equals to the column rank of a matrix, which will be called

rank(A). And since m′ ≤ m, and n′ ≤ n, one have the result

rank(A) = rank(A†) ≤ min(m,n). (442)

And so in singular value decomposition, the number of nonzero singular values is exactly

equal to rank(A), and the uk’s and v†
k’s of those nonzero singular values form the basis for

ColSpan(A) and RowSpan(A) respectively, that can live in different spaces but have the

same count (and conjugated together via ukσkv
†
k).

The null space of A is a column-vector set ⊆ Rn

Null(A) ≡ {x : Ax = 0} (443)

We see that the zero vector ∈ Null(A), and Null(A) forms a linear subspace ⊆ Rn.

The orthogonal complement of Null(A) is ColSpan(A†):

Null(A) ∪ ColSpan(A†) = Rn, Null(A) ∩ ColSpan(A†) = 0 (444)

This comes straight from the definition of orthogonal complement

(a,x) = 0, ∀x (445)

and the a’s that satisfy these constraints are the row vectors of A (if complex entries possible,

then conjugate) and their linear combinations, which are the column vectors of A†. Because

basis for a subspace and basis for its orthogonal complement form complete basis, we have

dim(Null(A)) + rank(A) = n (446)

A minimal basis for Null(A) is simply the vk’s with zero singular values. Similarly,

dim(Null(A†)) + rank(A) = m, (447)

the minimal basis for Null(A†) is simply the u†
k’s with zero singular values.

In solving a Ax = b problem, two kinds of pathologies can arise:
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1. If b /∈ ColSpan(A), then obviously there is no exact solution.

2. If A has a finite null space, then there is redundancy: if x is a solution, x + xnull is

also a solution. So the solution is not unique.

The above is why we need to develop the 3-page language above, because when problems

arises in a numerical computation, sometimes the fault is with the setup of the problem,

rather than with the algorithms that attempt to solve it. This is also why SVD is great,

because it tells us the basis for ColSpan(A) (the σk 6= 0 uk’s) and Null(A) (the σk = 0 vk’s),

so when problems arise, we can use SVD to do diagnostics and get to know what is going

on.

Just like seeing doctors, when sicknesses arise, there are remedies. Some are of patch-up

(band-aid) nature, depending on the physical and numerical context. For sickness 1, rank

deficiency (whether it is due to extremely high stiffnes + roundoff error, or some other

physics or question-posing problem), we could ask ourselves whether a rigorous equality is

really what we need. Just like in least-square fitting, sometimes minimizing the mean error

squared in good enough. So how about

min
x

‖Ax−b‖2 = min
x

(x†A†−b†)(Ax−b) = min
x

(x†A†Ax−x†A†b−b†Ax+b†b) (448)

Because x has both real and imaginary parts, there are “two” degrees of freedom per vector

entry in x and we can pretend to vary x† without varying x:

0 = (δx†)A†(Ax − b) (449)

so when the residual size is extremized:

A†Ax = A†b (450)

The above can achieve exact solution (we can find x so = holds exactly), because A†A can

be shown to extend the full column space of A†:

ColSpan(A†A) = ColSpan(A†) (451)

in other words, by left-multiplying A† there is no additional loss of rank, even A† is n×m

matrix, and A†A is a n × n matrix. (451) is easily provable by SVD in indexed form. In

Matlab, when we type
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A\b

and if A is a singular square matrix, or even a rectangular matrix, it actually solves (450).

To appreciate (450), consider fitting a cloud of points in 3D {xi, yi, zi}, i = 1..m, to a flat

plane. Equation for a plane is

xnx + yny + znz = b (452)

so 
x1 y1 z1

x2 y2 z2

...
...

...

xm ym zm


 nx

ny

nz

 = b


1

1
...

1

 (453)

should hold if all the points do lie on the plane. But they don’t (could be due to measuyre-

ment). So the best try would be
x1 y1 z1

x2 y2 z2

...
...

...

xm ym zm


 nx

ny

nz

 ≈ b


1

1
...

1

 (454)

in the least square sense. Taking our medicine, we see the best

n =

 nx

ny

nz

 ‖


x1 y1 z1

x2 y2 z2

...
...

...

xm ym zm

 \


1

1
...

1

 (455)

Then we can normalize n. With the normalized n, we can figure out what the scalar b is by

left-multiplying [1, 1, . . . , 1] on both sides of (453).

m = 200;

nexact = rand(3,1);

nexact = nexact / norm(nexact);

bexact = 1;

x = rand(m,1);
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y = rand(m,1);

z = (bexact - nexact(1)*x - nexact(2)*y) / nexact(3);

X = [x y z] + 0.1*randn(m,3);

plot3(X(:,1),X(:,2),X(:,3),’o’)

n = X \ ones(m,1);

b = ones(m,1)’ * X * n / m;

hold on; plot3(X(:,1),X(:,2),(b-n(1)*X(:,1)-n(2)*X(:,2))/n(3),’r*’);

Consider the least-square approach, when (450) is satisfied, we have

min
x

‖Ax − b‖2 = x†A†Ax − x†A†b − b†Ax + b†b = b†(b − Ax). (456)

Also, according to SVD the solution is

σ2
k(v

†
kx) = σk(u

†
kb) → v†

kx =
u†

kb

σk

, ∀σk > 0 (457)

(the above does not specify what v†
kx is for those with σk = 0 though), so

b − Ax = b −
∑

k

uk(u
†
kb) = b − P̂ColSpan(A)b = P̂ColSpan(A)⊥b (458)

so

min
x

‖Ax − b‖2 = ‖P̂ColSpan(A)⊥b‖2 (459)

we see it has indeed done the best it can do to minimize the residual, in the sense that the

method has mobilized all the power A has within it (ColSpan(A)) to minimize the residual.

The only error left are those that lie outside of ColSpan(A), which A can do nothing to

start with.

In sickness 2, indeterminacy, let us first presume

∃x0, Ax0 = b, (460)

so b ∈ ColSpan(A), but

dim(Null(A)) > 0 (461)

so there is entire family of solutions. To eliminate the floating degrees of freedom in a problem,

we could subject the solution to some arbitrary gauge, which are special rule (“the class could
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meet any particular morning on Monday, Wedneday, Friday; but let us just decide to meet

on Friday morning”). For example, we could choose gauge:

min
Ax=b

‖x‖2 = min
Ax=b

x†x (462)

like Occam’s razor (the law of parsimony: “other things being equal, a simpler / shorter

explanation is better than a more complex one.”). By the Lagrange multiplier method:

(δx†)x = 0, for all (δx†)A† = 0, (463)

we get

x ∈ ColSpan(A†) (464)

or

x = A†y. (465)

So, we can achieve (462) “Occam’s razor” gauge by solving

AA†y = b (466)

which gives a unique solution for x = A†y. This is again provable by SVD, in the sense that

AA† is a full-ranked symmetric matrix in the subspace spanned by ColSpan(A).

The two sicknesses are not mutually exclusive. Sometimes, they can happen together. This

occurs when

rank(A) < min(m,n) (467)

so the ColSpan(A) does not span m, and there is also finite null space. The two medicines

can be consumed simultaneously, once we revise the problem statement to

min
Ax=b

‖x‖2 → min
A†Ax=A†b

‖x‖2, (468)

the solution of which is, by the Lagrange multiplier method

(δx†)x = 0, for all (δx†)A†A = 0, → x = A†Ay, (469)

and so

A†AA†Ay = A†b. (470)
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which admits unique solution for

x = A†Ay (471)

i.e, there can be multiple y solutions

A†AA†Ay = A†b, A†AA†Aỹ = A†b (472)

but

y − ỹ ∈ Null(A†AA†A) = Null(A†A) (473)

since

Null(B2) = Null(B) (474)

if B is a Hermitian matrix. Therefore

y = ỹ + ynull, A†Aynull = 0 (475)

which will not make a difference in x = A†Ay, and therefore the x solution will be unique.

(We do not talk about the algorithm to obtain a y and therefore x here, but we just know

x will be unique).

Generally, we note the following properties

Null(A†A) = Null(A), Null(A†A)⊥ = ColSpan(A†A) = ColSpan(A†) = Null(A)⊥ (476)

Null(AA†) = Null(A†), Null(AA†)⊥ = ColSpan(AA†) = ColSpan(A) = Null(A†)⊥.

(477)

Also, for (468), since

‖x‖2 = ‖P̂Null(A)⊥x‖2 + ‖P̂Null(A)x‖2, (478)

the optimization is achieved with

P̂Null(A)x = 0, (479)

since Null(A) component does not contribute anything to changing the residual, i.e.,

x ∈ Null(A)⊥ = ColSpan(A†) (480)

which agrees with (471).
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5 Optimization and Krylov Subspace

Optimization is used very often in science and engineering, for instance in nonlinear regression

(curve fitting): we have a bunch of data (xi, yi), i = 1..m that we would like to represent by

a surface Y (x;η), where η is a set of unknown parameters of the continuous surface form.

The number of such parameters should be much less than m, though, to achieve dimensional

reduction [35, 36], which is what modeling and ultimately science is about (Astronomical

Tables → Newton). We can define a cost function, that may take the form

f(η) =
m∑

i=1

|Y (xi;η) − yi|2 (481)

and then do a minimization in η-space:

min
η

f(η). (482)

There could be multiple local minima to the problem, though. Also, sometimes, the physical

meaning of some of the entries also prevent them from taking values in entire space (−∞,∞),

so one needs to put some constraints on η. These constraints can be equalities or inequalities

(e.g. η3 > 0), and can be linear or non-linear.

If the cost function is a linear function of arguments, and the constraints are linear in-

equalities or equalities, then the optimization problem is called linear programming. Linear

programming has exact algorithmic solution in a finite number of steps [79]. Sometimes,

the arguments are constrained to be integers, in which case the problem is called integer

programming. Integer programming can be very difficult problem to solve.

Here we focus on nonlinear cost function problem, where f(η) is continuous in continuous

argument space, and derivatives
∂f

∂η
(483)

can be taken, either by analytical differentiation followed by numerical evaluation, or by

direct numerical differentiation. For simplicity we switch variables η → x, so

∂f

∂η
→ ∇f (484)

but with the understanding that the gradient is not taken in real space, but in parameter
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space.

5.1 Steepest Descent and Conjugate Gradient

We start by the most naive approach, steepest descent. Suppose computing ∇f vector is

quite expensive, relative to evaluating f(x). Say it is M = 100 times more expensive, which

in the case of taking numerical differentiation can be easily imagined. So roughly speaking,

for load balancing, we want to take ∝ M = 100 f(x) evaluations before re-evaluating ∇f
again. This will result in a line-search algorithm like follows:

1. Start with a guess x0, which should be as close to the minimum as possible. Compute

g0 ≡ −∇f(x0).

2. Conduct a line search on minλ>0 f(x0 + λĝ0). We know that for very small λ, the

function value is decreasing, but then at some λ, the function could start to increase

again. We could try a telescoping approach λk = λ02
k, and exponentially increase λk

until we see this reversal. Then we can use Brent’s method [80] (which hybridizes the

bisection, the secant method and inverse quadratic interpolation, but with reliability of

bisection) to zone in on λmin. This should take no more than tens of f(x) evaluations.

3. Repeat the process, and evaluate g1 ≡ −∇f(x1 ≡ x0 + λming
0)

The good property is that for each line search, the function value will decrease. Since the

algorithm consists of series of line searches, the method will result in monotonic decrease,

and therefore will converge on the local minima. In fast, the word steepest descent means

that locally, for very small λ, ĝ0 gives the best bang for the buck in decreasing the function

value. Thus, SD is “greedy”, in a short-sighted way.

The same greediness is also its failing. Certainly, an algorithm that can only monotonically

decrease cannot overcome “energy barriers” [81], if we think of the cost function as an

energy landscape [82]. Also, the short-sightedness is not the best strategy in terms of global

convergence, even for a single “energy well”. The condition for terminating the line search

is

g(x1) ⊥ g0 (485)

and this repeats:

g(xk = xk−1 + λgk−1) ⊥ g(xk−1) (486)
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which defines the iterative relation.

For the sake of discussion, let us suppose the cost function is

f(x) =
xTAx

2
− xTb +

bTA−1b

2
(487)

with energy minimum 0 at b − Ax = 0, and A is a real, symmetric, positive definite

matrix. How will the Steepest Descent line search do in terms of global convergence?

Plugging into (486), we get

A(xk − λAxk) ⊥ Axk (488)

so we get

λ =
gkTgk

gkTAgk
(489)

and

gk+1 = gk − Agk(gkTgk)

gkTAgk
. (490)

The above iterative relation is the essence of what is going on (although the user does not

know it). Because the function value can also be written as

f =
gTA−1g

2
(491)

we effectively want to reduce g to 0 quickly. Is the iteration (490) doing it effectively?

from Numerical Recipes
Note that if the contour lines were from a perfect quadratic form,  

the zigzag lines should follow a self-similar (fractal) path

Figure 1: Unless we gets lucky, Steepest Descent takes infinite iterations to find true target
even in 2D perfect quadratic energy
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The answer is no. This can be seen in 2D already. We have

g1 = g0 − λ0Ag0 ∈ span(g0,Ag0) ≡ K2(A,g
0) (492)

g2 = g1 − λ1Ag1 ∈ span(g0,Ag0,A2g0) ≡ K3(A,g
0) (493)

g3 = g2 − λ2Ag2 ∈ span(g0,Ag0,A2g0,A3g0) ≡ K4(A,g
0) (494)

and so on so forth. But for 2D, assuming A is non-singular (κ(A) could be large though),

there is

K2(A,g
0) = K3(A,g

0) = K4(A,g
0) = ... (495)

gk is just senselessly reverberating inside K2(A,g
0), always perpendicular to gk−1 (like chas-

ing its own shadow), but never quite getting to zero, for infinite number of steps.

What is the BEST algorithm one could EVER hope for in this context? Recall that at each

line search, there is a new opportunity to interact one vector, namely the search direction,

with A one time more. Without a global sense of orientation, the algorithm can (a) search

in a random direction, or (b) search in a direction according to “previously accumulated

experience”, i.e. even though the very first search direction g0 is “random”, all subsequent

searches are not, thus building up a Krylov subspace. This is very much like how a baby

learns, by interacting with the world surrounding him/her. (b) turns out to be much better

than (a), when the space dimension m is high.

5.1.1 2D

We can learn a lot about why SD fails even in two dimensions. SD is a reasonable sounding

algorithm: the seeker just follows the seeker’s desire. (In this sense, Laissez-faire free capital-

ism is like the steepest descent algorithm, it sounds “reasonable” and “intuitively beautiful”;

but then we had 2008 and 1929, which were not so reasonable experienced from a personal

level for those out of work). Why would such a reasonable algorithm fail?

Note that the goal of the iteration is to find a location where

g = b − Ax = 0 (496)

without inverting the matrix. Consider g(λ1), which denotes how the gradient evolves along
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Steepest Descent Line Searches in 2D

g0

x0

x1

g1

x2

g2

Reciprocity effect:   Dg = -ADx →  (g1, -Ag0) = (-Ag1, g0) > 0

→  Gradient torque effect 1 = Gradient torque effect 2    > 0

→  g2 is finite and // g0   → “resurrection of g0” 

→ infinite, self-similar repeats 

→ Even for a 2D problem, SD takes infinite iterations

Figure 2: The Problem with Steepest Descent Algorithm

the second line search. Since when making a move ∆x

∆g = −A∆x (497)

we need to understand the behavior of ∆g (each time one makes a move, one effectively

“interacts” the system with the trial direction ∆x, and one “reads out” the matrix-vector

product from the change in the gradient - note that matrix-vector product is allowed, but

matrix inversion is forbidden).

We know that g(λ1) starts out g1 ⊥ g0. In the second move, how can we zero out g(λ1) for

some λ1? If we search in the SD direction, ∆x = λ1g
1, this is generally impossible, since

g(λ1) = g1 − λ1Ag1 (498)

can never be zero, unless g1 is an eigenvector. But we can’t be so lucky. Generally speaking,

diagonalizing a matrix should be even more complex than inverting a matrix, so we don’t

want to go that route.

So the point is that in 2D, if we want to hit the target in 2 line searches, we better make

sure the 2nd move direction h1 should satisfy

0 = g1 − λ1Ah1 (499)

But we mentioned we do not want to invert the matrix (at least, not the full matrix). How

can we do that?
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Conjugate Gradient Line Searches in 2D

g0

x0

x1

g1 x2

g2 can only be 0

In anticipation of finite gradient torque effect:   Dg = -ADx

(g1, -Ag0) = (-Ag1, g0) > 0,  one mixes inertia in new search direction

(-Ag0, g0) < 0  to cancel the Gradient torque effect 2

→  the g0 component of gradient stays zero on the entire path if we 

mix h1 = g1 + g0g
0 → “g0 stays dead” → no repeats 

→ for a 2D problem, CG takes 2 iterations to find true target

Figure 3: Conjugate Gradient Line Searches for Perfect Quadratic Energy in 2D

Note that g(λ1) starts out perpendicular to g0. But, will it remain so on the path? Note this

is a different question from (499), and is somewhat weaker. We are not asking for g1−λ1Ah1

to be zero, we are just asking what it would take for g1 − λ1Ah1 to have zero projection on

g0 (but for all λ1), namely, would inner product

0 = (g0, Ah1) (500)

Since at this point g0 and g1 are the only two vectors we know, we will try to construct

h1 = g1 + γ0g
0 (501)

where γ0 is the mixing coefficient, which mixes the present gradient with the previous move

(almost like an inertia), to form the conjugate gradient. Then

(g0, Ah1) = (Ag0, g1 + γ0g
0) = (

g1 − g0

−λ0

, g1 + γ0g
0) (502)

In order to zero out the above to maintain zero projection to K1 = (g0), λ0 is irrelevant, and

we just get

0 = (g1 − g0, g1 + γ0g
0) = (g1, g1) − γ0(g

0, g0) (503)

so the mixing coefficient is

γ0 =
(g1, g1)

(g0, g0)
. (504)

Then the magic happens: as long as we are making a move along the conjugate gradient
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direction, g(λ1) ⊥ K1 = g0. Furthermore, even though we are not as greedy as moving in

the steepest descent direction (“yeah, let’s shoot all the buffalos eyes can see and sell the

hides in Europe“), the cost function is still monotonically decreasing:

df = −(g(λ1), dx) = −(g(λ1), h1)dλ1

= −(g1 + λ1Ah1, g1 + γ0g
0)dλ1

= −dλ1[(g1,g1) + λ1(Ah1, h1)] ≤ 0 (505)

since A is assumed to be symmetric and positive definite.

When the 2nd line search stops, we will have

g2 ⊥ h1 (506)

Recall that g2 is part of g(λ1), therefore

g2 ⊥ g0 (507)

always. Thus,

g2 ⊥ span(g0,h1) ⊥ span(g0,g1) = K2. (508)

But if we are in two dimensional space, this must mean

g2 = 0. (509)

Thus we have found the solution to Ax = b by scalar line searches, plus two “matrix-

free” gradient inquries, without inverting the full matrix, without diagonalization, without

knowing or storing the explicit entries of the matrix A.

In contrast, if we follow the SD line search, the problem is that g(λ1) will not stay perpen-

dicular to g0, even though starting out perpendicular to g0. When the second line search

stops, g2 will become perpendicular to g1, the search direction, by merit of the line search.

But because g(λ1) does not maintain orthogonality to g0, one generally ends up with a

finite-length

g2 ‖ g0 (510)

The quadratic energy well is self-similar, so (510) sets up a self-similar period-2 iteration

that will never stop. Thus, even in 2D, the steepest descent method will involve infinite
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number of scalar line searches and infinite number of “matrix-free” gradient inquries, which

is clearly not as good as the conjugate gradient method.

Here we should reflect the “meaning” of the mixing. Clearly γ0 is used to fight off

(g0, Ag1) (511)

which is generally non-zero (the problem of SD), by mixing in

(g0, Ag0). (512)

The former can be evaluated in a matrix-free fashion (indeed almost computation-free fash-

ion) by using the Hermitian property of A:

(g0, Ag1) = (Ag0, g1). (513)

Physically, the above reflects “reciprocity”. Reciprocity says that making a move along

g1 changes the gradient’s projection on g0 same as making a move along g0 changes the

gradient’s projection on g1. The former move is the deleterious effect we want to avoid. The

latter move is something we have experienced already (moving by λ0g0 changes the gradient

from g0 to g1 : since g0, g1 form orthogonal basis, the above means a λ0g0 move kills g0

but re-establishes g1). The deleterious effect of SD thus can be evaluated almost effortlessly,

and such deleterious effect is generally present if g1 6= 0. The philosophical point is that the

process (the first linesearch) which gives us the useful g1, also gives us the deleterious effect

(like pollution from industry). If we do not anticipate the unintended consequences due to

“pollution” in the next line search, we will be forever caught in the infinite cycle of “maximize

production” - “reduce pollution” - “maximize production” - “reduce pollution” -... Whereas,

the conjugate gradient method recognizes “pollution” if one moves in the steepest descent

direction, refrains from this most short-sighted approach (CG is still short-sighted, though,

the “eyesight” is only 2 steps), and instead chooses a mixed direction that zeros out pollution

to an already cleaned-up subspace. This way, the residual gradient is kept orthogonal to a

larger and larger dimensional Krylov subspace. Each scalar linesearch + gradient inquiry

extends the Krylov subspace by dimension-1. Thus, CG will always give the exact answer

in J steps for a perfectly quadratic problem.

108



Conjugate Gradient Line Searches in 3D

g0

x0

x1

g1

x2

g2 can only beK2

Out-of-plane twist

[g0,g1]=K2

h1K2

[g0,g1,g2]=K3

if we move along h2 = g2 + g1h
1 → “g0 stays dead” because (a) moving 

along h1 “inertially” does not resurrect g0 as shown before, (b) moving 

along g2 gives zero projection along g0, since (g0, -Ag2) = (-Ag0, g2) = 

(K2, g
2) = 0 →  decoupling from ancestors → we just need to find 

appropriate g1 and h2 to decouple also from father → at any point on h2

line search, “g0 and g1 stay dead” → for a 3D problem, CG takes 3

iterations to find true target

Figure 4: Conjugate Gradient Line Searches for Perfect Quadratic Energy in 3D

5.1.2 3D

h2 = g2 + γ1h
1 (514)

so

(g0, Ah2) = (g0, Ag2 + γ1Ah1) = (g0, Ag2) (515)

using the “inertia effect”. But then, g2 is perpendicular to K2 = [g0,g1], so there is always

(g0, Ah2) = 0. (516)

We then choose mixing coefficient γ1 such that

(g1, Ah2) = 0 (517)

This works in the same way as in 2D, and we end up

γ1 =
(g2, g2)

(g1, g1)
. (518)

5.1.3 Higher dimensions

The arbitrary J-dimensional proof is a clone of the 3D proof (next). The Matlab code looks

like
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% ConjugateGradientDemo.m %

J = 7000;

A = 10*speye(J);

for k=1:J,

A(k,mod(k+J,J)+1)=1;

A(k,mod(k+J+1,J)+1)=1;

A(k,mod(k+J-2,J)+1)=1;

A(k,mod(k+J-3,J)+1)=1;

end

% x = randn(J,1); %

% A * x %

% Afun(x) %

kappa = cond(A)

b = randn(J,1);

x = b*0;

g = b - Afun(x);

h = g;

for k = 1 : J,

gchange = Afun(h);

lambda = (h’*g) / (h’*gchange);

x = x + lambda*h;

gold = g’*g;

g = g - lambda*gchange;

h = g + (g’*g)/gold*h;

gnorm = norm(g);

fprintf (1,’k=%d, |g|=%g\n’, k,gnorm);

if (gnorm < eps) break; end;

end

norm(x - A\b)
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where the matrix A is represented by a linear operation

function y = Afun(x)

y = 10*x + ...

circshift(x,1) + ...

circshift(x,2) + ...

circshift(x,-1)+ ...

circshift(x,-2);

and so not even the sparse form of the matrix need to be stored in memory. One only needs

to implement the “linear operation” version, Afun(), to be able to use Conjugate Gradient

method. This is called “matrix-free” computation. Modern iterative linear system solvers

are all “matrix-free” algorithms.

The proof is as follows. For J × J non-singular matrix A, we have the following property

K1(A,g
0) ⊂ K2(A,g

0) ⊂ K3(A,g
0) ⊂ . . . ⊂ KJ(A,g0) = KJ+1(A,g

0) = RJ (519)

The BEST algorithm one could ever hope for is one that at step k, generates

gk ⊥ Kk(A,g
0) (520)

the entire Krylov subspace, instead of merely a component of it,

gk ⊥ gk−1 ∈ Kk(A,g
0), (521)

because if one merely projects out the gk−1 component, and not the rest of the Kk(A,g
0),

one can only diminish but not eliminate the strength of gk in any of the previous Krylov

subspaces (use a Krylov subspace as fixed observation basis).

Once we realize (520) is the real deal, it is not difficult to figure out what to do, since (520)

lends itself naturally to iterative methods, as we would require

gk+1 ⊥ Kk+1(A,g
0) = (g0, ...,gk) if gk ⊥ (g0, ...,gk−1). (522)

In other words, we require the new residual gradient to be perpendicular to all the previous

residual gradients experienced (“a fool suffers the same mistake twice” - and so would the

gradient). The previous g’s then form an orthogonal basis forKk that is a forbidden subspace
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for all the subsequent g’s to come into. With shrinking survival space, gk then must be

reduced to 0 in m steps, if the energy surface is perfectly quadratic. Since all energy surfaces

can be locally approximated, by Taylor expansion, quadratic surfaces, this leads to a much

more efficient algorithm than the steepest descent method.

Recall that we “interrogate” A by the line search algorithm (see Fig. ??):

gk+1 = gk − λkAhk ⊥ hk ↔ λk =
(hk,gk)

(hk,Ahk)
(523)

where hk is a search direction (so-called conjugate gradient direction) that we need to design

now based on limited information experienced before, and λk above is not computed directly

but arises from the line search algorithm (see Fig. ??). Note that because the user has no

global sense of orientation, and each time one checks direction one has to pay (by evaluating

f and ∇f), the best strategy is still to choose hk ∈ (gk, ...,g0) = Kk+1. This will establish

the Krylov subspace hierarchy which we have insinuated from the beginning:

gk ∈ Kk+1, hk ∈ Kk+1 → gk+1 = gk − λkAhk ∈ Kk+2. (524)

So hk is a peer of gk, and the addition of Ahk advances their children gradient to the next

generation.

The reason we cannot take hk to be gk in (523) is that the addition of Agk to gk will destroy

the orthonormality of gk+1 with (g0, ...,gk−2,gk−1), which gk and predecessors have carefully

cultivated. But how extensive is this destruction? It turns out to be not so bad, since

(gk−2,Agk) = (Agk−2,gk) = (AKk−1,g
k) = (Kk,g

k) = 0 (525)

as gk is the new vertical basis of Kk+1. (The focus of the CG method is always about the

virtues of the g’s). This is true for g0, ...,gk−2. The only destruction of orthonormality is

with gk−1:

(gk−1,Agk) 6= 0 (526)

based on the hierarchy structure. If left uncorrected, the hierarchy will collapse. But correct-

ing a single mistake is not that difficult, it just requires one extra variable or hybridization.

Let us choose

hk = gk + γk−1h
k−1 (527)
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The above choice, instead of something like

hk = gk + γk−1g
k−1 (528)

is because (527) will form a nice “ladder” structure. (528) does not work because while it

can correct one problem, (526), it will surely create another problem with (525). We want to

keep orthogonality with g0, ...,gk−2 by general hierarchy, while correcting only the problem

with gk−1. What vector v would satisfy orthogonality

((g0, ...,gk−2),Av) = 0 (529)

after A-multiplication? This vector lies right in front of our eyes, since in the previous move

gk = gk−1 − λk−1Ahk−1 → Ahk−1 = − 1

λk−1

(gk − gk−1) (530)

there is

((g0, ...,gk−2),Ahk−1) = ((g0, ...,gk−2),gk − gk−1) = 0 (531)

as is required for moving from gk−1 to gk, both of which are perpendicular to (g0, ...,gk−2). In

other words, the change in gradient in a prior hk−1 move was “non-offensive” to (g0, ...,gk−2),

so inheriting the same direction in the next move wouldn’t offend (g0, ...,gk−2), either. It

would offend gk−1 (“keep-going offense”), but it’s going to cancel the offense in (526) (“the

steepest descent offense”). So all we need to worry about is correcting (526) to be

0 = (gk−1,A(gk + γk−1h
k−1)) = (gk−1,Agk − γk−1

λk−1

(gk − gk−1)) (532)

which gives

γk−1 = −λk−1
(gk−1,Agk)

(gk−1,gk−1)
(533)

then we can build one more rung of ladder, and the Krylov subspace hierarchy repeats.

In reality, we do not have to compute Agk, since the “steepest descent offense”

(gk−1,Agk) = (Agk−1,gk) (534)

can be converted to something we have actually experienced before, with

gk = gk−1 − λk−1Ahk−1
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= gk−1 − λk−1A(gk−1 + γk−2h
k−2)

= gk−1 − λk−1Agk−1 − λk−1γk−2Ahk−2

= gk−1 − λk−1Agk−1 +
λk−1γk−2

λk−2

(gk−1 − gk−2) (535)

so

Agk−1 = − gk

λk−1

− agk−1 − bgk−2 (536)

and so

γk−1 = −λk−1
(gk−1,Agk)

(gk−1,gk−1)
= −λk−1

(Agk−1,gk)

(gk−1,gk−1)
=

(gk,gk)

(gk−1,gk−1)
(537)

which is eminently computable without any explicit matrix operations. (537) is the Fletcher-

Reeves form of how to choose the conjugate gradient hk = gk + γk−1h
k−1. Starting from

gk, but moving along the conjugate gradient hk (not the gradient itself gk) ensures that

any gradient g(xk + λkhk) (if one cares to check) experienced in the line search will be

perpendicular to (g0, ...,gk−2,gk−1), even though g(xk + λkhk) is rotating and changing

length, a wonderful property. In other words, we have proven there is a special line search

direction hk where the any gradient vector experienced on the line remains perpendicular to

(g0, ...,gk−2,gk−1), like rotating along some kind of an axial (but now a subspace).

Wait... but what about the necessity to be perpendicular to gk? This turns out to be a more

trivial detail. So far we have not chosen λk. But when the line search stops, we will have

gk+1 ⊥ hk ∈ Kk+1 (538)

but hk is a linear combination of Kk and gk, and since gk+1 ⊥ Kk, there is generally

gk+1 ⊥ gk. (539)

This is only true at a point, the point of stoppage of line search. Fundamentally, it is not as

cool as the subspace-axial rotation property, which works on the entire line.

While (537) is exact for an exact quadratic function, in reality there are always some devia-

tions from quadratic expansion. Polak and Ribiere introduced a slight modification

γk−1 =
(gk − gk−1,gk)

(gk−1,gk−1)
(540)

which seem to have better adaptability in a deviate-from-quadratic energy landscape.
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The CG method [71, 72] actually already provides reasonably practical solver to

Ax = b (541)

as well, even if A is not symmetric. Because we know that as long as A is non-singular,

there is only one minima to the cost function

f(x) =
(xTAT − bT )(Ax − b)

2
(542)

which is quadratic in x, with gradient function

g = −AT (Ax − b). (543)

Indeed the above gradient is just the residual to the least-square problem (450), with a

symmetric kernel ATA. If AT 6= A, we need to have matrix-free implementations of Ax

and yA (both left- and right-matrix-vector multiplies). If AT = A, we would then have a

matrix-free implementation of Ax = b solver, that is guaranteed to converge in less than m

steps, but often converges faster than that.

5.1.4 Convergence property of Krylov subspace methods

We have been singing praises for the “matrix-free” Krylov subspace iterative methods for

solving a linear system of equations:

Ax = b (544)

for sparse matrix AJ×J (with number of non-zero entries ∝ J). Now is the time to prove it.

We know that if we try to invert AJ×J directly, we face O(J3) operations and O(J2) storage,

which we can never afford if J = 106, which is commonplace for 3D PDE grids. In what

ways does Krylov subspace iteration save us?

If A is a sparse matrix, then a matrix-vector multiplication costs O(J) operations. Using

Krylov subspace methods such as CG are guaranteed to find the exact answer in J steps,

as the solution subspace Kr becomes the full space RJ , with r → J . This means one can

achieve exact answer with O(J2) operations, which is already one order better than direct

matrix inversion. Furthermore, only O(J) memory storage is required. These attributes

already made CG far better than direct matrix inversion.
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However, in practice, CG turns out to perform even much better than what is stated above.

In the case of a positive definite Hermitian A, a famous convergence bound is

‖errorn‖ ∼
(√

κ− 1√
κ+ 1

)n

, (545)

where n is the number of iterations, and κ is the condition number of A. For positive definite

Hermitian matrix, the condition number is simply

κ ≡ σmax(A)

σmin(A)
=

λmax(A)

λmin(A)
. (546)

In other words, exponential reduction in the error is predicted. And even (545) is conserva-

tive. That is, it is only an upper bound on the error.

To check this, we run the Matlab code in the previous section, for a 7000×7000 sparse matrix,

and get

>> ConjugateGradientDemo

Warning: Using CONDEST instead of COND for sparse matrix.

(Type "warning off MATLAB:cond:SparseNotSupported" to suppress this warning.)

> In /home/local/matlab/toolbox/matlab/matfun/cond.m at line 25

In /home/lij/Stuff/CNSE/ConjugateGradientDemo.m at line 16

kappa =

2.0520

k=1, |g|=16.7568

k=2, |g|=2.4874

k=3, |g|=0.374033

k=4, |g|=0.052198

k=5, |g|=0.00812793

k=6, |g|=0.00113109

k=7, |g|=0.000174221

k=8, |g|=2.43435e-05

k=9, |g|=3.57327e-06

k=10, |g|=5.3579e-07
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k=11, |g|=7.65481e-08

k=12, |g|=1.16479e-08

k=13, |g|=1.6677e-09

k=14, |g|=2.43298e-10

k=15, |g|=3.63893e-11

k=16, |g|=5.30611e-12

k=17, |g|=7.89293e-13

k=18, |g|=1.12736e-13

k=19, |g|=1.71009e-14

k=20, |g|=2.45623e-15

k=21, |g|=3.54928e-16

k=22, |g|=5.34718e-17

ans =

2.9601e-15

It is amazing that for a 7000×7000 matrix, we just need to construct a 22-dimensional

Krylov subspace to reduce the error to eps. Empirically, there is apparently some kind of

exponential convergence going on. This is the magic that underlies all finite-element PDE

solvers. The final explicit check seals the deal.

To go about understanding this, recall that CG has the fundamental property that the

residual gradient

gk ⊥ Kk(A,g
0) ≡ [g0,Ag0, ...,Ak−1g0] = [g0, ...,gk−1] (547)

Since g = b − Ax, we may start with guess solution x0 = 0, then g0 = b, and

gk ⊥ Kk(A,b) = [b,Ab, ...,Ak−1b] (548)

Our energy function (487) can be re-written as

f(x) =
gTA−1g

2
. (549)

The above can be formulated as a “variational statement”: With CG, we obtain solution xk
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at iterative step k, which minimizes f among all x ∈ Kk(A,b).

The above statement is obviously true for the first line minimization: we start at x0 = 0,

and move along ‖ b, until we find x1 ∈ K1, which is also the global minimum among all

points in K1, since we are doing line minimization, and any line section of quadratic f(x) is

quadratic 1D function.

For the second line minimization, recall that when it is done and we sit at x2, g2 ⊥ K2 plane,

as shown in Fig. ??. Now consider arbitrary move ∆x ∈ K2 in plane about x2:

x2 → x2 + ∆x, ∆x ∈ K2, (550)

the finite change in energy would consists of three terms:

∆f =
gT ∆x

2
+

∆xTg

2
+

∆xTA∆x

2
. (551)

The first two terms would be zero however if we sit at x2, since g2 is orthogonal to any

“revisional” move in K2 plane. The third term will always be non-negative for positive

definite A, thus

∆f =
∆xTA∆x

2
≥ 0. (552)

and we have proved the variational statement that any attempt to improve the solution by

revisional moves in Kk, once we have sit at xk, will fail.

Any kind of variational statement is very powerful. Essentially, by doing two line searches,

we have covered the entire plane that goes through the origin, and it is not necessary to

search this same plane ever again. (Note that this is not saying that by searching the same

plane normal, but with shifted abscissa, would not yield better results - that shifted 2D

plane is not a subspace however).

Since xk ∈ Kk, we have by definition

xk = by0 + Aby1 + ...+ Ak−1byk−1 = p(A)b. (553)

where p(A) is a polynomial function (of matrix A) with scalar coefficients y0, ..., yk−1. What

the CG method does is to essentially to provide numerical values for these y0, ..., yk−1, though

the line searches. The analytical expressions for the scalars y0, ..., yk−1 in terms of b and A

are deterministic, but nonlinear and highly convoluted (even though the original problem to
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be solved is linear). But what one “does” with these numbers is very simple (here “does” is

not in the computer, but in the mind) - just xk = p(A)b!

Furthermore, because of the variational statement, p(A) turns out to be the BEST polyno-

mial function among ALL polynomial functions of the same, or lower, order! In other words,

we now have a deterministic iterative algorithm - the CG method - which gives us y0, ..., yk−1

that beat all other “trial combinations” of same or less length! How wonderful!

The residual gradient is therefore

gk = b − Axk = (I − Ap(A))b = r(A)b (554)

where r(A) is another polynomial

r(λ) = 1 − λp(λ). (555)

So the variational statement can be written as

(y0, ..., yk−1) = arg min
r(A)∈Pk

r(A)b (556)

where Pk is the set of all polynomial functions of order k, with a single constraint that

r(0) = 1. If we don’t like this constraint, we can also write the above as

(y0, ..., yk−1) = arg min
r(A)∈Pk

r(A)

r(0)
b. (557)

The beauty is, we now have the CG algorithm to construct (y0, ..., yk−1) explicitly.

The above has revealed deep connections between Krylov subspace iterative methods with

so-called polynomial function approximation theory (Chapter 5 Evaluation of Functions

of [62]), originally developed for 1D scalar functions. We are essentially seeking a polynomial

r(λA) to try to assassinate b when λ = 1, and preserve b when λ = 0.

We may rewrite the energy (549) in terms of Euclidean norm as

f(x) =
‖A−1/2g‖2

2
(558)

A variational statement in f(x) is the same as a variational statement in Euclidean norm
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‖A−1/2g‖. From now on we define error as

ek ≡ ‖A−1/2g‖ = min
r(·)∈Pk

‖A−1/2r(A)b‖ (559)

But

‖A−1/2r(A)b‖ = ‖r(A)A−1/2b‖ ≤ ‖r(A)‖‖A−1/2b‖ (560)

according to (293) definition of matrix norm. In the function (Hilbert) space Pk, the

‖r(A)‖‖A−1/2b‖ “surface” always lies above the ‖A−1/2r(A)b‖ “surface”. So the minimum

of ‖r(A)‖‖A−1/2b‖ “surface” serves as upper bound on ek. By looking at the the scaling

properties of this upper bound, we get conservative estimate of the convergence behavior.

Note that ‖A−1/2b‖ is just e0.

Note that

‖r(A)‖ = max
λ∈λ1,λ2,...,λJ

|r(λ)| (561)

This is because an an eigenvector of A is also an eigenvector of the r(A) matrix, with eigen-

value r(λi), and we need to run over these eigenvalues of the r(A) matrix to figure out the

maximum amplification factor, for a fixed polynomial r(·). The above is a discrete maxi-

mization process, in which only the eigenvalues matter. We can be even more conservative

by changing it to a continuous maximization:

‖r(A)‖ ≤ max
λ∈[λmin,λmax]

|r(λ)| (562)

where now only the λmin and λmax of A, and nothing else, matter. We therefore obtain a

conservative upper bound on ek as a function of the number of iterations:

ek

e0
≤ min

r(·)∈Pk
max

λ∈[λmin,λmax]
|r(λ)| (563)

Several comments are in order:

1. The above upper bound is rigorous

2. The right hand side is now a min-max problem; it has nothing to do with matrix now,

and everything to do with polynomial function approximation in an interval.

It turns out that there is already a known solution to this min-max problem, and it is

achieved by a shifted Chebyshev polynomial (Appendix C) of degree k. (Note that the CG
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y0, ..., yk−1 is not the Chebyshev polynomial, otherwise we won’t need CG; the Chebyshev

polynomial optimizes the “upper-bound” surface). Essentially, we seek a polynomial that

stay as low as possible within a fixed interval [λmin, λmax]. The final result only cares about

κ = λmax/λmin, since for two intervals [λmin, λmax], [αλmin, αλmax] with the same κ, we only

need to rescale the argument of the polynomial (stretch the horizontal axis) to get the same

“staying low”.

0
0

1

lmin=1 lmax= k

The problem of “Staying Low” for k=1 polynomial

flashlight

(a)

0
0

1

lmin=1 lmax= k

The problem of “Staying Low” for k=2 polynomial

flashlight

These Chebyshev polynomials are good at dodging bullets!

(b)

Figure 5: Staying Low for (a) k = 1 polynomials, i.e. a straight line that goes through (0, 1).
and (b) k = 2 polynomials.

The result turns out to be

min
r(·)∈Pk

max
λ∈[λmin,λmax]

r(λ) =
2(√

κ−1√
κ+1

)k

+
(√

κ+1√
κ−1

)k
(564)

with the Chebyshev polynomial as minimizer. The fact that minr(·)∈Pk maxλ∈[λmin,λmax] |r(λ)|
is a well-posed problem can be seen for k = 1. (Fig. 5(a)) Imagine the interval [λmin, λmax]

is illuminated by flashlight, and some one is doing target practice with a pistol. The closer

the target lays to the ground (in the absolute value sense), the less likely it gets shot.

Now imagine passing any straight line (which goes through (0, 1)) through the flashlighted

region, what is the best profile to not get shot? The solution is obviously the line with slope

−2/(κ+1), and the highest point (most likely to get shot) would have heights (κ−1)/(κ+1).

This agrees with

2(√
κ−1√
κ+1

)
+
(√

κ+1√
κ−1

) =
2(
√
κ+ 1)(

√
κ− 1)

(
√
κ− 1)2 + (

√
κ+ 1)2

=
κ− 1

κ+ 1
. (565)
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For k = 2, based on the intuition that we should use the flat part of the polynomial to stay

low, we come up with the solution on Fig. 5(b), which is

r(λ) =

(λ−κ+1
2

)2

(κ−κ+1
2

)2
− 1

2

(−κ+1
2

)2

(κ−κ+1
2

)2
− 1

2

(566)

with peak at
1
2

(−κ+1
2

)2

(κ−κ+1
2

)2
− 1

2

=
(κ− 1)2

k2 + 6k + 1
(567)

which agrees with

2(√
κ−1√
κ+1

)2

+
(√

κ+1√
κ−1

)2 =
2(κ− 1)2

(
√
κ− 1)4 + (

√
κ+ 1)4

=
(κ− 1)2

κ2 + 6k + 1
(568)

For k = 3 and so on, it is more complicated, but it is a well posed problem computationally,

and one can check indeed the shifted Chebyshev polynomial lays the lowest.

Thus, CG converges at least as fast as

ek

e0
≤ 2(√

κ−1√
κ+1

)k

+
(√

κ+1√
κ−1

)k
≤ 2

(√
κ− 1√
κ+ 1

)k

. (569)

If κ = 100, then ek

e0 is bounded by 2(9/11)k, so to gain 16 effective digits requires maximally

188 CG iterations, irrespective of problem size J . On the other hand if κ = 4, it is very easy

for a high-order polynomial to “stay low” in the range, and will take only 35 CG iterations.

Preconditioning to change the condition number of the matrix is thus strongly motivated

(see section 5.2). If the condition number is precisely 1, then e1 has to be zero. This is

actually true, since if we have a spherical isosurface, the first line minimization anywhere

will hit the true target.

The CG algorithm [71, 72] works only for real, symmetric, positive definite matrices. With

a little effort, we can use the CG algorithm on positive definite Hermitian matrices:

A = B + iC, x = y + iz, b = u + iv, (570)
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so Ax = b gives two equations

By − Cz = u, Bz + Cy = v (571)

or (
B −C

C B

)[
y

z

]
=

[
u

v

]
(572)

The 2J × 2J real matrix above is symmetric if A is Hermitian. Also, it would be positive

definite if A is positive definite, so we could apply the CG method to this 2J × 2J real

matrix.

Using CG, we illustrate how the Krylov subspace method works. The general Ax = b

problem may involve non-positive-definite, non-symmetric, singular and even non-square

matrices. Thus, other methods, such as BiCGSTAB [73], MINRES [74] / LSQR [75], GMRES

[76], QMR [77, 78], etc. are invented, with different variations such as the definition of

error, the variational statement, etc. However, the basic principle of polynomial matrix

approximant by “matrix-free” sparse matrix-vector products stay the same. They are the

work horses of modern PDE solvers, and crowning jewels of computational mathematics.

5.2 Pre-conditioning and Tri-diagonal Linear System of Equations

The concept of pre-conditioning is important in numerical linear systems. Suppose we want

to solve

Ax = b (573)

For the moment let us assume a unique and exact solution exists, but because of bad condition

number of A is more difficult to get to by iterative methods. However, suppose we can find

solution to

Bx = y (574)

quickly, and suppose B is non-singular square matrix, then we can reformulate the problem

either as right-preconditioned system:

AB−1Bx = b → AB−1y = b, Bx = y (575)

123



or as a left-preconditioned system:

B−1Ax = B−1b (576)

The point of (576) is that the reformulated matrix B−1A has better condition number

κ(B−1A) < κ(A) (577)

so the left-hand side of (576), from an iterative solver’s point of view, is a better-behaving

beast. The dominant iterative solvers nowadays are Krylov subspace methods (CG [71, 72],

BiCGSTAB [73], MINRES [74] / LSQR [75], GMRES [76], QMR [77, 78], etc.), where one

develops the solution by repeated matrix-vector products. The Krylov subspace is defined

as

Kr(A, a) ≡ span(a,Aa, . . . ,Ar−1a), (578)

out of which one builds approximate solution x ∈ Kr(A, a): Ax ≈ b. We see that with

A = UΛU−1, if we define

c ≡ U−1a, (579)

we have

Kr(A, a) = (UΛ0c, ...,UΛr−1c) = ((U)1c1, (U)2c2, ..., (U)ncn)Vn×r (580)

where V is the so-called Vandermonde matrix

Vn×r =


1 λ1

1 . . . λr−1
1

1 λ1
2 . . . λr−1

2
...

... . . .
...

1 λ1
n . . . λr−1

n

 (581)

If A is non-singular, then all λk’s are non-zero, and

rank(Vn×r) = min(n, r). (582)

Certainly, when constructing the Krylov subspace, n = B−1Aa, where a stands for arbitrary

vector and n stands for the next vector, it will be a two-step algorithm:

ã = Aa, then solve Bn = ã (583)
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so fast and exact solvers like tridiagonal solver below could be useful as preconditioner to

accelerate the convergence of iterative solvers.

When the matrix or its preconditioner is tridiagonal,

A =


A1 A+

1

A−
2 A2 A+

2

. . . . . . . . .

A−
J−1 AJ−1 A+

J−1

A−
J AJ

 (584)

there is an exact O(J) non-iterative solution to Ax = b. We assume that the solution to

A−
i xi−1 + Aixi + A+

i xi+1 = bi, i = 1..J − 1, (585)

and

A1x1 + A+
1 x2 = b1, A−

J xJ−1 + AJxJ = bJ , (586)

satisfies relations of the form

xi+1 = αixi + βi, (587)

where αi and βi are unknown at this point (there is one excess degree of freedom per {αi, βi}
pair if xi 6= 0, and none if xi = 0), and substitute it into (585):

A−
i xi−1 + Aixi + A+

i (αixi + βi) = bi ↔ A−
i xi−1 + (Ai + A+

i αi)xi = bi − A+
i βi (588)

or

xi = − A−
i

Ai + A+
i αi

xi−1 +
bi − A+

i βi

Ai + A+
i αi

(589)

This is of the same form as (587) except one regression of index, so we identify the backward

recursion relationship for αi−1 and βi−1 to be

αi−1 = − A−
i

Ai + A+
i αi

, βi−1 =
bi − A+

i βi

Ai + A+
i αi

(590)

In order to satisfy the boundary condition at xJ , we let

αJ−1 = −A
−
J

AJ

, βJ−1 =
bJ
AJ

(591)
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and make a backsweep from here to get αi, βi(i = J − 2, 1). At the last node we have

x2 = α1x1 + β1 (592)

which when we plug into

A1x1 + A+
1 (α1x1 + β1) = b1 (593)

gives us

x1 =
b1 − A+

1 β1

A1 + A+
1 α1

(594)

This unravels the chain of unknowns. After that we do forward substitutions using (587)

from i = 1 to J − 1 to get x.

J=5;

A=full(spdiags([rand(J,1) 2*rand(J,1) rand(J,1)], -1:1, J, J));

alpha=zeros(J,1);

beta=zeros(J,1);

x=zeros(J,1);

b=rand(J,1);

alpha(J-1)= -A(J,J-1)/A(J,J);

beta(J-1) = b(J)/A(J,J);

for i = J-1:-1:2

alpha(i-1) = -A(i,i-1) / (A(i,i)+A(i,i+1)*alpha(i));

beta(i-1) = (b(i) - A(i,i+1)*beta(i)) / (A(i,i)+A(i,i+1)*alpha(i));

end

x(1) = (b(1) - A(1,2) *beta(1)) / (A(1,1)+A(1,2)*alpha(1));

for i = 1:J-1

x(i+1) = alpha(i)*x(i) + beta(i);

end

x - A\b

The above program is demonstrated to work in almost all cases. But what if AJ = 0, so
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(591) cannot be used? This turns out to be no problem, since we would have

A−
J xJ−1 + 0 · xJ = bJ , (595)

which would allow us to solve xJ−1 (A−
J cannot be also 0 on this occasion, otherwise the

matrix would be singular). Then we can take one column and one row off A, and repeat the

process. The same story for the denominator Ai + A+
i αi in (590).

The gist of the clever trick above is to postulate axillary unknowns which are more relaxed

(“gauge dof”) than the original unknowns, perform nonlinear substitutions to satisfy the

constraints in the middle, and unravel the unknowns based on BCs. The same trick would

work for a block tri-diagonal set of systems, with αi’s becoming square matrices of the same

size, and βi’s being the vectors.

Fast and exact solvers like tridiagonal solver above could be useful as preconditioner to

accelerate the convergence of iterative solvers. Ideally, we want the preconditioner matrix B

to be as close to A as possible (while maintaining easy-of-computation), so B−1A is close to

the identity matrix and κ(B−1A) is not much larger than one.

6 Numerical Function Analysis

The study of convergence rate of Krylov subspace method such as CG has revealed a surpris-

ing connection to scalar polynomials. One does not need to overstate here the importance

of Taylor expansion in numerical algorithm construction - for example in PDE discretization

operator - which is nothing other than a polynomial approximation to f(x). However, the

Taylor expansion is very “local”, as we just require maximal fidelity of the “Taylor polyno-

mial” with respect to f(x) in terms of derivatives around x0 only. In the Chebyshev error

bound for CG, we see instead that we seek a polynomial that “stays low” within a range of

x. Thus there is more to the story of polynomial approximation than just Taylor expansion.
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6.1 Approximations

6.1.1 Chebyshev Approximation

Suppose someone gives you a “blackbox” subroutine for function f(x), x ∈ [−1, 1]. That

is, you are free to compute f(xi) for any xi of your choice. (The “blackbox” may also be

experiments!) You are told that f(x) is smooth, but knows nothing else. The question is,

how will you reverse-engineer the “blackbox” into a polynomial with explicit coefficients?

If you use the “Taylor polynomial” approximation, you would pick a x0, say 0, compute

numerical derivatives around x0, and then build a “Taylor polynomial”. But this is clearly

not a good approach in terms of efficiency and robustness for the entire [−1, 1] interval, if

you think about it.

To get a more nonlocal approximation, you may divide up the domain, sample f(x) and then

use spline representation. The spline representation is a very powerful approach, but we will

not discuss it here. One problem with spline approximant is that the high-order derivatives

are not necessarily continuous.

We know the Chebyshev polynomials (Appendix C) are true polynomials, with

[T0(x), ..., TM(x)] = span(x0, ..., xM) (596)

For an arbitrary function f(x), x ∈ [−1, 1], we may require a more nonlocal approximant,

f(x) ≈ f̃(x), (597)

which is that the approximant function f̃(x) agrees exactly with f(x) in M + 1 locations.

(Just like the Taylor expansion requires exact agreement in M + 1 derivatives at the same

location). Furthermore, since TM+1(x) has M+1 roots, we will ask these agreement locations

to be at {xm}, the M+1 roots of TM+1(x). The lowest-order polynomial that can go through

{xm, f(xm)} generally are order-M , thus, we know that there generally exist {dk}:

f̃(x) =
M∑

k=0

dkTk(x) (598)

that can do the job. Given the discrete orthogonality condition (657), it is straightforward
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to show that

dk =
2 − δk0

M + 1

M∑
m=0

f(xm)Tk(xm) (599)

One may ask, why not directly fit f̃(x) =
∑M

k=0 ckx
k, which span the same function space as

[T0(x), ..., TM(x)]. The answer is that inversion of the Vandermonde matrix

V =


1 x0 ... xM

0

1 x1 ... xM
1

...
...

. . .
...

1 xM ... xM
M

 (600)

would be required, and V can have very bad condition number, so loss of effective digits

could happen. In contrast, if one uses Chebyshev approximant, the “inversion” is done

analytically. Furthermore, the Chebyshev polynomial is very-behaved and bounded between

[−1, 1] in value, even for very high order k.

Another question is why the roots of TM(x). The answer is that the convergence properties

would be good. There are two kinds of convergence procedures. In the first procedure, one

takes a very large M (very many roots) to evaluate dk, but truncate the number of terms

K �M :

f̂(x) =
K∑

k=0

dkTk(x) (601)

It turns out this truncation behaves very gracefully, in the sense that even though f̂(x) cannot

hit all of the {xm, f(xm)} (or any of them), the error is spread out evenly across the domain,

rather than concentrating somewhere. If one uses (x0, ..., xM) basis, the truncation would

work horribly. This is akin to the truncation properties of CG: even though J iterations

would give us the exact answer, truncating at k � J iteration would already give us an

answer that is very very good.

The second convergence procedure involves takes a very large M (very many roots) to eval-

uate dk, and then expressing f̃(x) in (598) with no truncation. Very often, the “error” turns

out to be exponentially small (Chap. 5.8.1 Chebyshev and Exponential Convergence of [62]).

The exponential convergence is already seen in fact in the CG convergence bound (569). This

exponential convergence property is also inherited by the Gauss quadrature method using

Chebyshev polynomial. In contrast, the “Taylor polynomial” can give power-law conver-
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gence, but generally does not give exponential convergence.

6.1.2 Padé Approximation

The Padé approximant is a rational function

f̃(x) =

∑M
k=0 akx

k

1 +
∑N

k=1 bkx
k

(602)

with its M +N + 1 coefficients determined by matching the first M +N + 1 derivatives of

f(x) at x = 0:

dkf̃

dxk
(x = 0) =

dkf

dxk
(x = 0), k = 0, 1, ...,M +N. (603)

When we choose M = N , it is called diagonal Padé approximation.

We skip over the detailed algorithm to obtain {ak, bk}, except mentioning it is a linear

problem [62]. Philosophically, the Padé approximant is the “rational” analog to Taylor

expansion. It tends to give approximant that is much less volatile than the Taylor polynomial

for large x’s. Indeed limx→±∞ f̃(x) are finite, unlike the Taylor approximant which always

diverge.

Recall that in the PDE solvers, the explicit algorithms are in the form of a polynomial

propagator operator, while the implicit algorithms are in the form of a rational fraction

propagator. Indeed, the explicit algorithms are more volatile (CFL required for stability),

while radius of stability for implicit algorithm can be infinite, philosophically akin to the

comparison between Padé approximant and Taylor approximant.

6.2 Quadrature

The name “quadrature” originates from ancient Greek practices of constructing a square,

using compass-and-straightedge only, which has the same area as that of a more complex

shape. The “squaring of the circle” was a historical challenge to the human mind, until

in 1882 Lindemann and Weierstrass proved that π is transcendental, and thus the task is

impossible.

After calculus was invented, quadrature basically stands for “numerical integration”.
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6.2.1 Gauss Quadrature

To compute the value of definite integral

I =

∫ b

a

dxf(x) (604)

we are familiar with the trapezoidal rule:

I = h

(
f0

2
+ f1 + ...+ fM−1 +

fM

2

)
+O

(
f ′′

M2

)
(605)

Simpson’s rule:

I = h

(
f0

3
+

4f1

3
+

2f2

3
+

4f3

3
+ ...+

2fM−2

3
+

4fM−1

3
+
fM

3

)
+O

(
f (4)

M4

)
(606)

etc., which belong to the Newton-Cotes family of methods:

Ĩ =
M∑

m=0

wmf(xm) (607)

which share the common characteristics that {xm} are equally spaced nodes, and only the

nodal weights {wm} change from method to method, which influences the order m of the

method. The trapezoidal rule is order M = 2 method, as the error scales as M−2 and would

give exact answer for linear polynomials. The Simpson’s rule is order M = 4 method, as the

error scales as M−4 and would give exact answer for all cubic polynomials.

Wouldn’t it be great if both the nodal positions {xm} and nodal weights {wm} can change?

That is, the {xm, wm} are pre-tabulated, and for arbitrary “blackbox” f(x), we use (607)

to estimate I. Generally speaking, if we use M + 1 nodes, then we would have 2M + 2

DOF in the algorithm. So ideally, we should be able to achieve perfect integration for any

order-2M + 1 polynomials. What are the {xm, wm} that achieve this? (Gauss-Legendre

table)

Why do we care about exact integration for order-2M + 1 polynomials? The reason is we

know that high-order polynomials (such as Legendre or Chebyshev polynomials) can be

damn good approximant of f(x) across an entire range of x. This is saying more than

Taylor expansion, which focuses more on a small neighborhood around x0, but not so much

on a possibly large range of x. What this means is that when we plot f(x) and f̃(x) in the
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range of approximation [a, b], the two would look hardly distinguishable. Therefore,

I[f̃(x)] ≈ I[f(x)] (608)

“to a very good degree”. But since f̃(x) is a polynomial, the Gauss Quadrature can compute

f̃(x) exactly by sampling the values of f(x) - if the Gauss Quadrature nodal positions are also

where f(x) = f̃(x). Then, one would be able to estimate I[f(x)] “to a very good degree”.

It turns out that, when f(x) has good analytical properties, “to a very good degree” often

means exponential convergence. Exponential convergence is something special in numerical

algorithms, like CG, Newton-Raphson etc. The Newton-Cotes quadrature methods only

gives power-law convergence. Thus, it behooves us to look deeper into the beauty of the

Gauss Quadrature method.

Like I said above, the analytical properties of the integrand f(x) is important. In science

and engineering, we sometimes must deal with integrand f(x) with weak singularity (that is,

the value diverges but still integrable), or integration bound a or b→ ±∞. The latter can be

converted to the former by a variable transform. On these occasions, one may factor out the

weak singularity part W (x), and the remainder, which still has good analytical properties,

will be called f(x). So the general form of these weakly singular numerical integrals would

be:

I =

∫ b

a

dxW (x)f(x) (609)

Below are some solved choices for W (x):

• W (x) = 1√
1−x2 , x ∈ [−1, 1]: Gauss-Chebyshev quadrature, using Chebyshev polynomi-

als:

Tk+1(x) = 2xTk(x) − Tk−1(x). (610)

• W (x) = 1, x ∈ [−1, 1]: Gauss-Legendre quadrature, using Legendre polynomials:

(k + 1)Pk+1(x) = (2k + 1)xPk(x) − kPk−1(x). (611)

• W (x) = e−x2
, x ∈ [−∞,∞]: Gauss-Hermite quadrature, using Hermite polynomials:

Hk+1(x) = 2xHk(x) − 2kHk−1(x). (612)

etc. In above, it is imperative to check first that the above are indeed polynomials. Indeed,
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the iterative way of constructing higher order polynomial from two lower-order polynomials

has the same “feel” as the CG method. So one way to think about the CG method is that

CG constructs “orthogonal polynomials” of A by iteration: xk = pk−1(A)b.

The Chebyshev, Legendre, Hermite functions are so-called orthogonal polynomials (denoted

by {pn}) because they satisfy

(f, g) ≡
∫ b

a

dxW (x)f(x)g(x) = 0 (613)

if f(x) = pm(x), g(x) = pn6=m(x).

The requirement that

I ≡
∫ b

a

dxW (x)f(x) = Ĩ ≡
M∑

m=0

wmf(xm) (614)

for order 2M + 1 polynomials can be satisfied if we choose {xm} to be the roots of pM+1(x),

since we can factor a 2M + 1 polynomial into

f(x) = pM+1(x)q(x) + r(x) (615)

where q(x) and r(x) are both order M polynomials. Then

I =

∫ b

a

dxW (x)(pM+1(x)q(x) + r(x)) =

∫ b

a

dxW (x)r(x) (616)

since q(x) can be decomposed into combination of p0(x), p1(x), ..., pM(x). Also, we have

f(xm) = r(xm) (617)

for the M + 1 roots of pM+1(x). Since r(x) is order-M polynomial, with M + 1 coefficients,

r(x) can be uniquely reconstructed as

r(x) =
M∑

m=0

r(xm)lm(x) =
M∑

m=0

f(xm)lm(x), (618)
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where lm(x) = 1 at x = xm and 0 at all other roots,

lm(x) =
∏
j 6=m

x− xj

xm − xj

(619)

and is manifestly order-M polynomial. Thus we get

I =

∫ b

a

dxW (x)r(x) =

∫ b

a

dxW (x)
M∑

m=0

f(xm)lm(x) =
M∑

m=0

wmf(xm), (620)

if we identify

wm =

∫ b

a

dxW (x)lm(x). (621)

Clearly, {xm, wm} can be pre-computed to high accuracy and stored in look-up tables. The

above devilishly beautiful proof was provided by Carl Friedrich Gauss in 1814. One can

think of it as Gauss’ shoutout to Newton.

Once we establish (614), a discrete orthogonality condition between orthogonal polynomials

pn(x), pn′(x), with n, n′ ≤M can be established. We know that∫ b

a

dxW (x)pn(x)pn′(x) = δnn′gn, (622)

but since pn(x)pn′(x) is a polynomial with degree less than 2M + 1, we can apply (614), to

get

δnn′gn =
∑

i

wmpn(xm)pn′(xm). (623)

The benefit of Gaussian Quadrature, on first look, appears to be that for the same M + 1

evaluations of the “blackbox” function, we can get exact answer if the “blackbox” function

is order 2M+1 polynomial, whereas the Newton-Cotes family of quadrature methods can at

most get order M polynomial exactly right, and in reality much less than that (trapezoidal

rule: linear; Simpson’s rule: cubic polynomials), for the same number of function evaluations.

In reality, however, one never integrates polynomials, as the results would be available an-

alytically. For a non-polynomial function f(x), the convergence procedure is that as one

increases M in

ĨM ≡
M∑

m=0

wmf(xm) (624)
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where {xm, wm} are updated for larger and larger M , how quickly does ĨM approach I.

The proof is elaborate, but the general conclusion is that as long as f(x) has good analytic

properties, the convergence is exponential. Crudely we may understand the result as the

following. In Simpson’s rule, the error scales as M−4, which comes from refinement of the

sampling nodes, as the order of the method is kept fixed. In Gaussian Quadrature, however,

the refinement of the sampling nodes and the enhancement of the order of the method is

done simultaneously, so we could guess the error scales as M−(2M+2) = e−(2M+2) ln M .

The above is significant because it illustrates the fundamental behavior of a good basis

function. The orthogonal polynomials is one way to expand an arbitrary function, under

a given weight function W (x). The other, very famous way, is the Fourier expansion. We

know that for well-behaved functions, such as

f(x) =
1√

2πσ2
e−

x2

2σ2 , x = (−∞,∞) (625)

the Fourier transform is also a Gaussian:

f(k) ≡
∫
dxe−ikxf(x) = e−σ2k2/2 (626)

which means when we truncate the Fourier expansion, we loses “spectral strength” that

decays very rapidly (faster than exponential in this case). This is the reason planewave basis

are often used in electronic structure calculations, which is especially appropriate when

electron density changes slowly [83].

On the other hand, when the f(x) has sharp discontinuities in value (or in any orders of

derivatives, to a lesser degree), there is the well-known “Gibbs oscillation phenomenon”,

which is fundamentally caused by a power-law decay in the spectral strength. For example,

the aperture function

f(x) = H(x+ 1) −H(x− 1) (627)

gives Fourier transform

f(k) ≡
∫
dxe−ikxf(x) =

e−ik − eik

−ik
=

2 sin(k)

k
(628)

which decays as O(k−1). These functions would requrie an excessive number of planewaves

to approximate well. In this sense, the planewaves are not good basis function for this

problem, in numerical computations. (One can still use planewaves for doing the physics
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and the math, in the brain, as the procedure is still convergent, albeit slowly.) The so-called

real-space basis with finite support might be more efficient.

The use of smooth global basis functions is often called the spectral method, while the use

of real-space local functions with finite support underlies methods such as the finite-element

method. Sometimes, a mixture of the two can be used: for example, to describe the stress

field around a crack, one may express the stress field as the sum of a singular term plus a

regular term. The singular term expresses the leading-asymptote, σ(r) = K/
√
r, whereas

the remainder is much smoother, and maybe expressed, for example, by expanding with the

spectral method.

7 Cross-Validation

Break up data into training set and validation set. While getting fitting parameters from

fitting to the training set, one tests the accuracy of fit by compareing to the “secret” val-

idation set. One may increase the number of fitting parameters, which always reduces the

fitting error, until the validation error starts to go up.

A More on Pareto Distribution

Suppose γ > 1, dC(w) = ρ(w)dw = −d(w/wcut)
1−γ, w ∈ (wcut,∞), where C(w) is the

cumulative probability. So

C(w) = 1 − (w/wcut)
1−γ, w ∈ (wcut,∞) (629)

People also define so-called Pareto index α:

α ≡ γ − 1 (630)

exponent, which is how the cumulative probability

P (w > w′) = 1 − C(w′) = (w′/wcut)
−α, w′ > wcut (631)
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According to Pareto’s diligent collection of data (for instance, the richest 20% of the Italian

population owns 80% of Italy’s land, in 1906), so we have, by definition

(wrich/wcut)
1−γ = 0.2 (632)

Their cumulative wealth, on the other hand, must scale as wρ(w)dw (like γ → γ − 1, so the

wealth cumulant W (w) = 1 − (w/wcut)
2−γ). So

(wrich/wcut)
2−γ = 0.8 (633)

which means wrich/wcut = 4, and γ = 2.161 and α = 1.161. The larger α and γ is, the more

“equality” we have in the distribution.

When we plotW (w) against C(w), we get the Gini curve (http://en.wikipedia.org/wiki/Gini coefficient),

with

G ≡ A

A+B
= 1 − 2B (634)

with

B =

∫ ∞

1

(1 − v2−γ)(γ − 1)v−γdv = (γ − 1)

∫ ∞

1

(v−γ − v2−2γ)dv

= (γ − 1)((γ − 1)−1 + (3 − 2γ)−1) =
2 − γ

3 − 2γ
(635)

so

G ≡ A

A+B
=

1

2γ − 3
(636)

and with 80-20 rule we get a Gini coefficient of 0.756. The Gini coefficient of USA was about

0.45 in the late 2000s. The Gini coefficient of China was 0.61 in 2010.

B More on Newton-Raphson Method

Consider we would like to find the root of 1D function

f(xroot) = 0 (637)

where f(x) is generally transcendental function that contains exp(), xα, fraction, etc. How-

ever, one can compute the derivative f ′(x), either analytically or numerically. For notational
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simplicity, we are going to assume that xroot = 0, even though the computer does not know

it. The Newton-Raphson algorithm

xnew = xold −
f(xold)

f ′(xold)
. (638)

What is the convergence property of the above algorithm?

Suppose both xold and xnew are “close enough” to the true solution xroot = 0, so that a Taylor

expasion applies in the neighborhood near xroot:

f(x) = f ′(0)x+
f ′′(0)

2
x2 +O(x3) (639)

We then have

f ′(x) = f ′(0) + f ′′(0)x+O(x2) (640)

Plugging it into the algorithm, we would have

xnew = xold −
f ′(0)xold + f ′′(0)

2
x2

old +O(x3
old)

f ′(0) + f ′′(0)xold +O(x2
old)

= xold − xold

1 + f ′′(0)
2f ′(0)

xold +O(x2
old)

1 + f ′′(0)
f ′(0)

xold +O(x2
old)

= xold − xold(1 − f ′′(0)

2f ′(0)
)xold +O(x2

old))

=
f ′′(0)

2f ′(0)
x2

old +O(x3
old) (641)

Thus, we have
f ′′(0)

2f ′(0)
xnew ≈

(
f ′′(0)

2f ′(0)
xold

)2

(642)

and so
f ′′(0)

2f ′(0)
x(l) ≈

(
f ′′(0)

2f ′(0)
xguess

)2l

(643)

which is exponential rate of convergence if we consider the iteration step l as like time. The

above assumes there is finite derivative f ′(xroot) at the root.
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C More on Chebyshev Polynomials

The Chebyshev polynomial of degree k is

Tk(x) ≡ cos(k cos−1(x)), x ∈ [−1, 1] (644)

Define θ ≡ cos−1(x), x = cos θ, y ≡ sin θ, z ≡ eıθ, then

Tk(x) = Rezk = Re(x+ iy)k = Re
∑
m

Cm
k x

k−m(iy)m (645)

Tk(x) =
∑

n

Cm
k x

k−2n(iy)2n =
∑

n

Cm
k x

k−2n(−1)n(1 − x2)n (646)

so Tk(x) is indeed a polynomial, with the first few terms:

T0(x) = 1, (647)

T1(x) = x, (648)

T2(x) = 2x2 − 1, (649)

T3(x) = 4x3 − 3x, (650)

T4(x) = 8x4 − 8x2 + 1, (651)

T5(x) = 16x5 − 20x3 + 5x, (652)

T6(x) = 32x6 − 48x4 + 18x2 − 1 (653)

... (654)

Chebyshev polynomials satisfy

∫ 1

−1

Ti(x)Tj(x)√
1 − x2

dx =


0, i 6= j
π
2
, i = j 6= 0

π, i = j = 0

(655)

as well as recursive relation

Tk+1(x) = 2xTk(x) − Tk−1(x), k ≥ 1. (656)

It can be seen from Fig. 5.8.1 of [62] that Tk(x) has exactly k roots within [−1, 1].
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There is also a discrete orthogonality condition. Suppose xm (m = 0..M) are the M + 1

roots of TM(x), then

M∑
m=0

Ti(xm)Tj(xm) =


0, i 6= j

M+1
2
, i = j 6= 0

M + 1, i = j = 0

(657)

for i, j ≤M . The above can be proven using the Guass quadrature formula:

∫ b

a

dxW (x)f(x) =
M∑

m=0

wmf(xm) (658)

which is an exact formula for order 2M + 1 polynomials. Take f(x) = Ti(x)Tj(x), which is

a polynormal with order less than 2M + 1, we would have

∫ b

a

dxW (x)Ti(x)Tj(x) =
m∑

m=0

wmTi(xm)Tj(xm) =


0, i 6= j
π
2
, i = j 6= 0

π, i = j = 0

(659)

It turns out, from the theory of Guass quadrature (6.2.1), that the Guass-Chebyshev weights

are constants:

wm =
π

M + 1
, (660)

so we proved the (657).

The fact that Chebyshev polynomials are solutions to the minmax problem within polynomial

function space is not surprising considering it offers multiply degenerate minima and maxima,

and has no more wiggle room to decrease one maximum while not raising the other ones.

140



−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−3

−2

−1

0

1

2

3

x

T
n(x

)

Chebyshev polynomials

Figure 6: Watch how the Chebyshev polynomials wiggle between x ∈ (−1, 1).
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